Frequency comb cooling of atoms

HRZZ-eng

 

 

IP-2018-01-9047 Hlađenje atoma frekventnim češljem

Frequency comb cooling of atoms (CoolComb)

Duration: November, 1st 2018 – October, 31st 2022. Budget: 1.000.000,00 HRK

Project team:
Damir Aumiler (PI), Ticijana Ban, Danijel Buhin – Institute of physics, Zagreb, Croatia
Bojan Resan – University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland
Wesley C. Campbell – University of California Los Angeles, Los Angeles, USA

The aim of this project is to create the tools that will allow us to extend laser cooling to more diverse species of atoms and molecules. Specifically, we will use an optical frequency comb for direct laser cooling and trapping of rubidium (Rb) atoms, and demonstrate simultaneous comb cooling of two Rb isotopes. To achieve this goal, we have gathered an experienced team of researchers – experts in laser physics, cold atoms, frequency comb spectroscopy, and theoretical modeling of laser-atom interactions – who will theoretically model the comb-induced radiative force on atoms and define optimal comb parameters for cooling, design and build a novel blue-diode-pumped Ti:sapphire picosecond modelocked laser, stabilize and gain control over its frequency comb spectrum, and apply the comb for direct cooling and trapping of Rb atoms and simultaneous dual-species cooling.


December 2018. We offer fully funded PhD position as a four years contract starting in March 2019, working on the project Frequency comb cooling of atoms, led by dr. Damir Aumiler.
Appr. Salary: 820 eur/month

Description

The introduction of laser cooling to atomic and molecular physics three decades ago started a revolution that continues to redefine the landscape of feasible experiments which help us better understand the quantum world. The use of narrow-band continuous-wave lasers to control the motional temperature of atoms has evolved over the years to have much broader applications than originally anticipated, rapidly pushing forward the frontiers of scientific development through impressive efforts in the field of ultracold atoms. Yet despite these substantial advances, there remain important gaps in the field, one of the most conspicuous being our inability to laser cool and trap hydrogen, (almost any) molecules, or the most prevalent atoms in organic chemistry: carbon, oxygen, and nitrogen.

The aim of this project is to create the tools that will allow us to extend laser cooling to more diverse species of atoms and molecules. Specifically, we will use an optical frequency comb for direct laser cooling and trapping of rubidium (Rb) atoms, and demonstrate simultaneous comb cooling of two Rb isotopes. To achieve this goal, we have gathered an experienced team of researchers – experts in laser physics, cold atoms, frequency comb spectroscopy, and theoretical modeling of laser-atom interactions – who will (i) theoretically model the comb-induced radiative force on atoms and define optimal comb parameters for cooling, (ii) design and build a novel blue-diode-pumped Ti:sapphire picosecond mode-locked laser, (iii) stabilize and gain control over its frequency comb spectrum, and (iv) apply the comb for direct cooling and trapping of Rb atoms and simultaneous dual-species cooling. Our successful demonstration will validate the frequency comb as a new tool for laser cooling a broader range of molecules and so far un-coolable species thus allowing breakthroughs in fields as diverse as controlled chemistry, astrophysics, precision measurements, and quantum information and simulation.

PhD student will join the group to engage in theoretical modeling of comb-atom interaction and laser cooling using a frequency comb. He/she will work closely with the experimentalists in the group, as for the complex cold atom experiment it is essential that the theoretician has an in-depth understanding of the experiment, measurement procedures and protocols, and data processing and analysis, in order to provide continuous theoretical support in modeling and interpretation of experimental results.

Competence requirements

Master’s degree in Physics or equivalent.
Experience in atomic physics and/or cold atoms will be an advantage. Priority will be given to candidates who have received awards, scholarships, etc. for excellence in studies, participated in scientific research work, have co-authored scientific papers, or presented at scientific meetings. The applicant should be highly motivated and have the ability to do research independently as well as a part of the research group. The candidate must be fluent in both oral and written English.

The application should include:

1. Motivation letter
2. Curriculum vitae
3. Certificate of degree in physics
4. Contact information of at least one reference person

Contact: Dr. Damir Aumiler, aumiler@ifs.hr.