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letting me complain to them when stuff in the lab didn’t work and for serving as mobile Google
translate whenever I needed stuff made in the workshop. To Omid Vartehparvar for being a
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Abstract

Obviously, this thesis on optical atomic clocks is not the first of its kind. Many excellent dis-
ertations on strontium optical atomic clocks and optical clocks in general are readily available
[1, 2, 3, 4, 5, 6, 7]. I have used these thesses extensively while researching for and writing my
own doctoral thesis. It is my hope that my own thesis will contribute in some small way to
this vast sea of excellent doctoral works and aid future young researchers when they start their
journey into the field of optical atomic clocks.
This thesis will primarily focus on the work I (and other members of in POZA group at Nicolaus
Copernicus University) have done during my 3 year stay with the group of prof hab. Michał Za-
wada. In this thesis, I will do my best to clearly differentiate between my own work and work
done by other members of the POZA team. As a dual PhD student, I’ve had the honor and the
pleasure to be a member of two research groups. The first group is the Quantum technologies
group (QT) lead by dr.sc. Ticijana Ban at Center for Advanced Laser Techniques (CALT) at
the Institute of Physics in Zagreb, Croatia. The second group is the Polish optical atomic clock
(POZA) group lead by prof. hab. Michał Zawada at Nicolaus Copernicus University in Toruń,
Poland. When I first joined the POZA group, two bosonic optical clocks (which will be referred
to as Sr 1 and Sr 2 in this thesis) were already fully operational. The construction of a third
clock, which was to be based on effect of superradiance of strontium atoms in a blue magic
wavelength lattice, was just beginning.
This thesis will be separated into six distinct chapters. Chapter 1 (which the reader is currently
reading) covers the fundamentals of optical atomic clocks and introduces the terminology used
in optical atomic clock physics such as accuracy, stability, fractional stability and so forth.
Chapter 2 provides the theoretical background of the steps required to achieve clock operation.
It will introduce the basics of Doppler cooling and magneto-optical traps, as well as properties
of the strontium atom and its isotopes. It will then focus on methods used in cooling of two
different strontium isotopes - the bosonic 88Sr and fermionic 87Sr. It will then move on to intro-
duction of optical lattices, their magic wavelengths and atomic polarizabilities of clock states of
the strontium atom. It finally finishes with high-precision spectroscopy of the clock transition



in strontium and digital locking of the clock laser to the atomic line of the clock frequency.
Chapter 3 presents measurements of photoionization cross sections of atomic states used in op-
tical clock cycle of 88Sr. These photoionization cross sections where measured at the newly
proposed blue magic wavelength. It will then present my own theoretical work on the study of
feasibility of using blue magic wavelength optical lattice optical clocks. It will end by present-
ing my work of examining photoionization induced losses of atoms in blue magic wavelength
optical lattice, the resulting constraints on blue magic wavelength lattice optical clocks and pos-
sible mitigation measures.
Chapter 4 presents experimental work done by myself and other members of POZA group on
redesign and upgrading of Sr 1 optical clock to enable simultaneous (and intermittent) operation
of both the bosonic and fermionic optical clock.
Chapter 5 presents results on my work on getting the fermionic optical clock in Sr 1 fully oper-
ational. It will examine the loading of the fermionic blue and red MOTs. Also, where feasible,
it will make comparisons with its bosonic counterpart.
Chapter 6 will present the evaluation of systematic shifts (accuracy budget) for the bosonic op-
tical clock in Sr 1 as part of our international March 2022 campaign.
Appendix A will show the work (in form of published articles) I’ve done (in collaboration with
other members of the QT group) on cooling of 87Rb and 85Rb using a frequency comb, as well
the examination of frequency-comb-induced radiation pressure force in dense atomic clouds.

Keywords: cold atoms, strontium optical atomic clock, blue magic wavelength, blue magic
wavelength optical atomic clock, photoionization



Wprowadzenie

Przedstawiana dysertacja oczywiście nie jest pierwszą tezą napisaną o optycznych zegarach ato-
mowych. Wiele doskonałych rozpraw na temat optycznych zegarów strontowych i ogólnie op-
tycznych zegarów atomowych jest łatwo dostępnych [1, 2, 3, 4, 5, 6, 7] . Szeroko korzystałem z
tych tez podczas badań i pisania własnej pracy doktorskiej. Mam nadzieję, że moja własna praca
przyczyni się w jakiś niewielki sposób do tego ogromnego morza doskonałych prac doktorskich
i pomoże przyszłym młodym badaczom, gdy rozpoczną swoją podróż w dziedzinie optycznych
zegarów atomowych. Teza ta skupi się przede wszystkim na pracy, którą ja (i inni członkowie
grupy POZA na Uniwersytecie Mikołaja Kopernika w Toruniu) wykonaliśmy podczas mojego
3-letniego pobytu w grupie dr. hab. Michała Zawady. W tej pracy postaram się wyraźnie
odróżnić pracę własną od pracy innych członków zespołu POZA. W czasie pracy nad pod-
wójnym doktoratem miałem zaszczyt i przyjemność być członkiem dwóch grup badawczych.
Pierwsza grupa to grupa technologii kwantowych (QT) kierowana przez dr. sc. Ticijanę Ban
w Centrum Zaawansowanych Technik Laserowych (CALT) w Instytucie Fizyki w Zagrzebiu,
Chorwacja. Druga grupa to grupa polskiego optycznego zegara atomowego (POZA) kierowana
przez dr. hab. Michała Zawadę, prof. UMK, na Uniwersytecie Mikołaja Kopernika w Toruniu.
Kiedy po raz pierwszy dołączyłem do grupy POZA, dwa bozonowe zegary optyczne (które w
tej pracy będą określane jako Sr1 i Sr2) były już w pełni sprawne. Budowa trzeciego zegara,
który miał bazować na efekcie nadpromienistości atomów strontu w sieci o niebieskiej mag-
icznej długości fali, dopiero się zaczynała.
Ta teza została podzielona na sześć rozdziałów. Rozdział 1 (który czytelnik obecnie czyta) obe-
jmuje opis podstaw optycznych zegarów atomowych i wprowadzenie terminologii stosowanej
w fizyce zegarów atomowych, takiej jak dokładność, stabilność, stabilność względna i tak dalej.
Rozdział 2 zawiera teoretyczne podstawy kroków wymaganych do skonstruowania optycznego
zegara atomowego. W rozdziale przedstawione są podstawy chłodzenia dopplerowskiego i
pułapki magnetooptycznej, a także właściwości atomu strontu i jego izotopów. Dalszy opis sku-
pia się na metodach stosowanych w chłodzeniu dwóch różnych izotopów strontu - bozonowego
88Sr i fermionowego 87Sr. Następnie wprowadzone są pojęcia sieci optycznej, magicznych dłu-



gości fal i polaryzowalności atomowej stanów zegarowych atomu strontu. Rozdział kończy się
opisem precyzyjnej spektroskopii przejścia zegarowego w stroncie. Po zlokalizowaniu przejś-
cia laser zegarowy jest cyfrowo stabilizowany do linii atomowej przejścia zegarowego.
Rozdział 3 przedstawia pomiary przekrojów fotojonizacyjnych stanów atomowych stosowanych
w cyklu zegara optycznego 88Sr. Przekroje te zostały zmierzone przy stosunkowo niedawno za-
proponowanej niebieskiej magicznej długości fali. Następnie przedstawiona jest moja własna
praca teoretyczna na temat możliwości wykorzystania optycznych zegarów atomowych z siecią
optyczną o niebieskiej magicznej długości fali. Rozdział kończy się przedstawieniem mojej
pracy badającej straty atomów wywołane fotojonizacją w sieci optycznej o niebieskiej mag-
icznej długości fali, wynikające z tego ograniczenia optycznych zegarów atomowych i możliwe
środki zaradcze.
Rozdział 4 przedstawia eksperymentalne prace wykonane przeze mnie i innych członków grupy
POZA przy przeprojektowaniu i modernizacji zegara optycznego Sr 1 tak, aby umożliwić jed-
noczesne (i naprzemienne) działanie zarówno bozonowego, jak i fermionowego zegara opty-
cznego.
Rozdział 5 przedstawia wyniki mojej pracy nad zapewnieniem pełnej sprawności fermionowego
zegara optycznego w Sr 1. Zbadane zostały ładowanie fermionowych niebieskich i czerwonych
pułapek magneto-optycznych. Ponadto tam, gdzie to możliwe, dokonano porównań do ich bo-
zonowych odpowiedników.
Rozdział 6 przedstawi ocenę systematycznych przesunięć (budżet niepewności) częstości bo-
zonowego zegara optycznego w Sr1 wykonanych w ramach międzynarodowej kampanii porów-
nań częstotliwości w marcu 2022 r.
Załącznik A raportuje pracę (w formie opublikowanych artykułów), którą wykonałem (we
współpracy z innym członkiem grupy QT) nad chłodzeniem 87Rb i 85Rb za pomocą grzebi-
enia częstotliwości, a także badanie siły ciśnienia promieniowania indukowanego grzebieniem
częstotliwości w gęstych chmurach atomowych.

Słowa kluczowe: zimne atomy, strontowy optyczny zegar atomowy, niebieska magiczna dłu-
gość fali, fotojonizacja



Prošireni sažetak

Ova teza o optičkim atomskim satovima nije prva te vrste. Mnoge izvrsne disertacije o stron-
cijevim optičkim atomskim satovima i optičkim satovima općenito su već dostupne [1, 2, 3, 4,
5, 6, 7]. Opsežno sam koristio ove teze dok sam istraživao i pisao svoj doktorski rad. Nadam
se da će moja vlastita teza donekle pridonijeti ovom golemom moru izvrsnih doktorskih radova
i pomoći budućim mladim istraživačima kada krenu na svoje putovanje u područje optičkih
atomskih satova.
Ovaj diplomski rad prvenstveno će se fokusirati na rad koji sam ja (i drugi članovi POZA grupe
na Sveučilištu Nikole Kopernika) obavili tijekom mog trogodišnjeg boravka u grupi prof.hab.
Michała Zawade. U ovom diplomskom radu nastojat ću jasno razlikovati svoj doprinos od
doprinosu ostalih članova POZA tima. Kao dvojni doktorand, imao sam čast i zadovoljstvo
biti članom dviju istraživačkih grupa. Prva grupa je Grupa za kvantne tehnologije (QT) koju
vodi dr.sc. Ticijana Ban u Centru za napredne laserske tehnike (CALT) na Institutu za fiziku
u Zagrebu, Hrvatska. Druga grupa je Grupa za poljski optički atomski sat (POZA) koju vodi
prof. hab. Michał Zawada na Sveučilištu Nikola Kopernik u Toruńu, Poljska. Kad sam se tek
pridružio POZA grupi, dva bozonska optička sata (koji će se u ovom diplomskom radu nazivati
Sr 1 i Sr 2) već su bila u potpunosti operativna. Izgradnja trećeg sata, koji se trebao temeljiti na
učinku superradijativnosti atoma stroncija u optičkoj rešetci plave magične valne duljine, tek je
počinjala.
Ova teza biti će podijeljena u šest zasebnih poglavlja. Poglavlje 1 (koje čitatelj upravo čita)
pokriva osnove optičkih atomskih satova i uvodi terminologiju koja se koristi u fizici optičkih
atomskih satova kao što su točnost, stabilnost, frakcionalna stabilnost i tako dalje.
Poglavlje 2 pružit će teorijsku pozadinu koraka potrebnih za postizanje rada optičkog atomskog
sata. Upoznat će čitatelja s osnovama Dopplerovog hlad̄enja i magneto-optičkih zamki, kao i
svojstvima atoma stroncija i njegovih izotopa. Zatim će se usredotočiti na metode koje se ko-
riste u hlad̄enju dvaju različitih izotopa stroncija - bozonskog 88Sr i fermionskog 87Sr. Zatim će
se prijeći na uvod u optičke rešetke, njihove magične valne duljine i atomske polarizabilnosti
satnog stanja atoma stroncija. Konačno završava visokopreciznom spektroskopijom satnog pri-
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jelaza u stronciju koja se koristi za pronalaženje satnog prijelaza u optičkom atomskom satu.
Nakon što je prijelaz lociran, digitalno zaključavamo naš satni laser na atomsku liniju satnog
prijelaza.
Poglavlje 3 predstavit će mjerenja fotoionizacijskih poprečnih presjeka atomskih stanja koja se
koriste u ciklusu optičkog sata za 88Sr. Ovi presjeci izmjereni su na novopredloženoj plavoj
magičnoj valnoj duljini. Zatim će predstaviti moj vlastiti teorijski rad na proučavanju izve-
divosti korištenja optičkih rešetki sa plavom magičnom valnom duljinom u optičkim atom-
skim satovima. Završit ću predstavljanjem mog rada na ispitivanju gubitaka atoma u magneto-
optičkoj stupici izazvanih fotoionizacijom atoma u optičkoj rešetki sa plavom magičnom val-
nom duljinom, rezultirajućih ograničenja optičkih satova sa optičkim rešetkama sa plavom mag-
ičnom valnom duljinom i mogućih mjera za ublažavanje navedenih gubitaka.
Poglavlje 4 predstavit će eksperimentalni rad koji sam obavio ja i drugi članovi grupe POZA na
redizajnu i nadogradnji Sr 1 optičkog sata kako bi se omogućio istovremeni (i isprekidani) rad
bozonskog i fermionskog optičkog sata.
Poglavlje 5 predstavit će preliminarne rezultate mog rada na postizanju operabilnosti fermion-
skog optičkog sata u Sr 1. Ispitat će se spremanje atoma u plavu i crvenu fermionsku magneto-
optičku stupicu. Takod̄er, gdje je to moguće, napravit će se usporedbe sa bozonskom plavom i
crvenom magneto-optičkom stupicom.
Poglavlje 6 predstavit će procjenu sistematskih pomaka (eng. systematic shifts) satnog prijelaza
za bozonski optički sat u Sr 1 kao dio naše med̄unarodne kampanje iz ožujka 2022.
U poglavlju 7 dan je zaključni pregled rezultata ovog doktorskog rada, kao i perspektive za
daljnja istraživanja.
Dodatak A će pokazati rad (u obliku objavljenih članaka) koji sam obavio (u suradnji s drugim
članovima QT grupe) na hlad̄enju 87Rb i 85Rb korištenjem frekventnog češlja, kao i ispitivanje
sile zračenja inducirane frekventnim češljem u gustim atomskim oblacima.

Ključne riječi: hladni atomi, stroncij, optički atomski sat, optička rešetka, plava magična valna
duljina, fotoionizacija
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Chapter 1

Introduction

1.1 Importance of (optical atomic) clocks

The ability to measure and keep time has played an essential role in the rise of modern civili-
sation. Since the first humans emerged from the savanas of Africa to form the nuclei of what
would become the first human civilisations, timekeeping has been an important part of their
lives. It allowed them to plan many social endeavours from trade, religious ceremonies to agri-
culture. With the introduction of duodecimal (12) and sexigesimal (60) timekeeping system
by the ancient Summerians, the basis of how we measure hours and days has been set. These
first attempts to measure time were done using astronomy by monitoring the motions of celes-
tial objects. As one might expect, these methods weren’t very precise and without a universal
standard. Other units in the metric system such as length and weight had similar issues, with
different kingdoms and empires using different metrics and units.
By the time of the French revolution, some strides were made to create blue an universal metric
system, mostly focusing on the measurement of distance and weight. The first played a crucial
role in design of naval maps and sea navigation, while measurement of weight had an important
role in everyday trade and commerce.
By 1967, other units such as the Ampere, the Kelvin, the mole, the candela and the second
were also defined, with the second "defined by taking the fixed numerical value of the caesium
frequency, ∆νCs, the unperturbed ground-state hyperfine transition frequency of 133Cs, to be
9192631770 when expressed in the unit Hz, which is equal to s−1". From this point on, mea-
surement of time and frequency has become inextricably linked. What distinguishes time and
frequency for other units is our ability to measure them with unprecedented stability and ac-
curacy, far beyond of what we can do with other physical quantities. The first caesium clock
developed in 1955 [9] had an accuracy at 10−10 level. It is no surprise that the statement of late
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Chapter 1. Introduction

Figure 1.1: Evolution of fractional systematic uncertainty of atomic clocks over the years. The best
strontium optical atomic clocks reach systematic uncertainty of 2 x 10−18 [8].

Nobel physics laurate Arthur Schawlow: "Never measure anything but frequency!" has become
almost an axiom of the timekeeping community. After 50 years of development, state-of-the-
art microwave atomic clocks have reached accuracy of 10−16 and 1.6 x 10−14 stability at 1 s,
limited only by the quantum projection noise limit [10]. The evolution of fractional systematic
uncertainty of atomic clocks over years is shown in Fig. 1.1. Clearly, to make the next step
in development of frequency standards, a new type of frequency standard would be required.
However, before we move into that, we should clarify the two terms we used to characterise our
clocks - accuracy and stability. The schematic of accuracy and stability is shown in Fig. 1.2.
Due to external perturbations (electric and magnetic fields, light fields, black body radiation

Neither accurate 
or stable

Stable, but 
not accurate

Accurate, but 
not stable Accurate and stable

Figure 1.2: Schematic of measurements of accuracy and stability with different accuracies and stabilities.
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Chapter 1. Introduction

etc), the experimentally measured clock transition frequency will be shifted from the true value
of the unperturbed transition. Clock accuracy tells us how much our measured clock transition
frequency is shifted from this true value and is usually expressed as either the shift in absolute
value ∆ν (in Hz) or fractional shift ∆ν/ν where ν is the absolute transition frequency of the
clock transition. Clock stability is the statistical measurement which tells us how our clock
transition frequency changes in time. In this thesis it will be expressed as fractional frequency
stability, which is the ratio of stability and the absolute frequency of the clock transition. Fre-
quency of the atomic clock transition ω, when perturbed by environmental influences is given
as [5]

ω = ω0(1 + ϵ+ y(t)), (1.1)

where ω0 is the frequency of the unperturbed transition, ϵ is the fractional frequency correction
due to systematic effects and y(t) is the fractional fluctuation of the frequency of the clock
transition in time.
The evaluation of stability of the clock transition is represented using the Allan variance [11]

σ2
y(τ) = ⟨1

2
(yk+1 − yk)

2⟩, (1.2)

where the yk is the mean value of the fractional frequency deviation around tk

yk =
1

τ

∫ tk+τ

tk

y(t)dt =
1

τ

∫ tk+τ

tk

ν(t)− ν0
ν0

dt, (1.3)

where ν0 is the nominal frequency over some period τ . The Allan deviation, given as the square
root of the Allan variance, is equal to

σy(τ) =
χ

2πQS/N

tc
τ
, (1.4)

where Q = ν
∆ν

is the line quality factor of the clock transition for clock linewidth ∆ν, S/N
is the signal-to-noise ratio achieved in measurement cycle time tc , and χ is a constant of the
order of unity which depends on the transition lineshape used in measurement [1]. Clearly, to
improve stability of our clock we wish to push both Q and S/N in Eq. 1.4 to be as large as
possible. However, to increase S/N ratio, one would have to increase the number of atoms in
the microwave clock. This would bring issues with atomic collisions which would affect clock
accuracy.
An alternative option is increasing the quality factor by using an atomic transition with a higher
frequency. Therein lies the motivation to move from microwave to optical atomic clocks. As-

3



Chapter 1. Introduction

suming all other parameters being equal, the change from microwave to optical transition in-
creases clock stability by 4 orders of magnitude.
Optical atomic clocks can generally be separated into two groups - those which use ions and
those which use neutral atoms. Ion clocks were first developed. Ions can be trapped in a Paul
trap [12] for whose development Wolfgang Paul was awarded the Nobel Prize in 1989 "for
his development of a method for using electrical currents and electromagnetic fields to capture
charged atoms in a trap". The Paul-type traps use a quadrupole potential which varies in time,
trapping the atom using Coulumb force. An ion can be stored in such a trap for days or even
months. There are, however, disadvantages of using ions. Since ions strongly interact with
other ions or particles, only a few ions can be trapped at a time. Many ion clocks, such as Al+

[13, 14], Ca+ [15, 16], Yb+ [17, 18], Sr+ [19, 20, 21], In+ [22, 23, 24], Hg+ [25], Ra+ [26],
Ar+ [17] are in development. The best Yb+ ion clocks can reach accuracy of 3 x 10−18 [18]. In
contrast to ion clocks, optical lattice clocks are based on cooling and trapping of neutral atoms
in an optical lattice dipole potential. Since atoms are neutral particles, their interaction with
each other and their environment is much weaker compared to ions. This enables trapping and
interrogation of many atoms in a single trap. However, their neutral charge also makes trapping
them more complicated due to their weaker interaction with electric fields. In development of
optical lattice clocks, the greatest focus was placed on earth-alkaline and earth-like-alkaline
atoms. These atoms have simple energy structure and narrow intercombination lines such as
the 1S0 → 3P0 double forbidden transition with sub-Hertz linewidth. Current limitations of
the observed linewidth come from maximum interrogation time of clock transition of about 1 s
due to limited coherence time of the clock laser. Optical lattice clocks can be operated using a
number of earth-alkali atoms, like Sr [8, 27, 28, 29], Yb [30, 31, 32, 33] and Hg [34, 35, 36].
This thesis will focus on my work done on the strontium optical lattice clocks which we will
discuss in much greater detail in the following chapters.
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Chapter 2

Theoretical background of optical clock
operation

This section provides the theoretical background of optical clock operation and the steps re-
quired to achieve clock operation. First I will discuss the theoretical background of Doppler
cooling and magneto-optical trapping of atoms, the first step in all cold atoms experiments. Af-
ter that I will discuss the atomic properties of strontium, our chosen atom for atomic clock op-
eration. I will then finally cover each stage in an optical clock cycle, starting with the two-stage
cooling, loading of atoms in the optical lattice and ending with the high-precision spectroscopy
of the clock transition.

2.1 Doppler cooling

We begin our journey into the magical forests of optical atomic clocks in the same place as most
cold atom experiments do - by building a magneto-optical trap (MOT) - a system consisting of
spatially-varying magnetic fields and laser beams used to cool and trap atoms. The method used
to cool atoms is (quite appropriately) called Doppler cooling and is depicted in Fig. 2.1 a). This
technique has been first proposed by Hänsch and Schawlow in 1975 [37] with first experimental
demonstration of both neutral atoms [38] and ions [39] in the following years.
We consider a simplified picture of a two-state atom moving in 1D with velocity v⃗x in x direction
from left to right in an EM field created by two counter-propagating laser beams as shown in
Fig. 2.1 a). In Fig. 2.1 a), the atom is depicted by a blue sphere with the two black circles around
the sphere representing the two possible energy states of the atom. Photons from both beams
have frequency ωl which is smaller than the transition frequency ω0 of the atomic transition.
We say the laser is red-detuned (with detuning given as δ = ωl − ω0 (in Hz) where δ < 0 for
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Chapter 2. Theoretical background of optical clock operation

red-detuned beams and where δ > 0 for blue-detuned beams). Due to the Doppler shift k⃗x · v⃗x,
where k⃗x is the wavevector of the photons in x direction, the atom will see photons coming
from the right as shifted up in frequency (blue-detuned) and therefore in resonance with the
atomic transition, while photons coming from the left are out of resonance. This will cause the
atom to preferentially absorb photons whose wavevector direction is opposite to the direction
of atoms’ velocity which will result in lowering of its velocity. After absorbing a photon, the
atom will jump to its excited internal state and after a short period of time de-excite back to
the ground state via spontaneous emission. In spontaneous emission photons are emitted in a
random direction. Therefore, over many absorption-emission cycles, the spontaneous emission
will not contribute to the change of atoms’ velocity. This process of preferential absorption and
spontaneous emission, referred to as Doppler cooling, will over many cycles reduce the velocity
of the atom. The story about Doppler cooling can easily be extended from 1D to 3D by simply
adding two additional sets of counter-propagating beams, creating 3 mutually orthogonal sets
of counter-propagating beams in 3 directions (x,y,z), as shown in Fig. 2.1 c).
Let us consider how these cycles of absorption-emission would affect an ensemble of atoms in
an idealized gas as this will be our starting point in an optical clock. The 3D velocity distribution
of such an ensemble of atoms is given by the Maxwell-Boltzmann distribution for which the root
mean square velocity is given as vrms =

√
3kBT
ma

where T is temperature of the gas, ma is mass
of individual atoms and kB is the Boltzmann constant [40]. We can easily see that a reduction
in vrms velocity of the Maxwell-Boltzmann distribution will also result in cooling down of the
atomic ansamble.

From the description of Doppler cooling, one may initially expect that the laser beams will
continue to slow down the atom until it reaches zero velocity. In terms of temperature of an
ansamble of atoms, this corresponds to cooling to absolute zero. That, however, is not the case.
There is a lower limit to the temperature achievable with Doppler cooling. This temperature is
called the Doppler temperature and is given as TDoppler =

ℏΓ
2kB

where Γ = 2πγ where γ is the
natural linewidth (in Hz) of the atomic transition used for Doppler cooling and ℏ is the reduced
Planck constant. In other words, temperatures achievable by Doppler cooling are limited by
the properties of the atom being cooled, i.e. the linewidth of the cooling transition. This limit
appears due the spontaneous emission described is Fig. 2.1. In spontaneous emission photons
are emitted in a random direction. The kicks in momentum the atom receives from the emission
of photons result in random walk of the atom. The rate of these spontaneous emission kicks
is given by the lifetime of the upper state of the atom. A shorter lifetime (i.e, a larger natural
linewidth γ) will result in higher rate of spontaneous emission kicks. This increases the atoms’
velocity, heating the atomic ansamble and giving a higher Doppler temperature. At equilibrium
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Figure 2.1: The basic principles of Doppler cooling and trapping of atoms. Top figure shows an atom
with velocity v⃗ moving from left to right in an EM field created by two counterprogating laser beams.
Both beams are detuned by δ = ωl − ω0 < 0. However, due to the Doppler shift, the atom sees the
photons coming from the right (left) as blue-detuned (red-detuned) and therefore in (out of) resonance
with its atomic transition. This will make the atom preferentially absorb photons from the right which
lowers its velocity. The Zeeman splitting of magnetic sublevels of the upper state of Jg = 0 → Je = 1

transition is shown in bottom right figure. For an atom at position z, a laser with frequency ωl will be
detuned by δ+ (δ−) from the me = 1 (me = −1) magnetic sublevels of the excited state Je = 1. Since at
position z we have δ+ < δ−, the atom will preferentially absorb photons from the σ+ circularly-polarized
beam, pushing it towards the center of the trap. Similarly, for atom at z’ we have δ− < δ+, and the atom
preferentially absorbs σ− circularly-polarized beam, again pushing the atom towards the center of the
trap.

the heating and cooling rate are equal, and the temperature at this equilibrium is the Doppler
temperature [40].
Temperatures below this limit are usually called sub-Doppler temperatures and can be achieved
by using different sub-Doppler cooling techniques such as Sisyphus [41] or evaporative [42]
cooling. This temperature is called recoil temperature and it is given as Trecoil =

ℏ2k2
makB

. This
limit arises from the fact that there is a minimum amount of momentum ℏk a single photon can
impart on the atom to change its velocity.
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So far we’ve spoken only about cooling of atoms. However, cooling down atoms alone isn’t
sufficient as atoms will eventually diffuse out of the area of overlap of the cooling beams and
escape. To trap atoms we require a spatially-dependent, restoring force which will ensure atoms
are pushed to the center of the trap and prevent them from escaping. This will also ensure high
enough density of atoms for experimental purposes thus enabling sufficient signal-to-noise for
experiments. The trapping is achieved by adding a linear magnetic field gradient to the optical
part of the trap [43]. To explain trapping of atoms, we will assume the case with the simplest
internal structure where the atom has total angular momentum |Jg = 0,mg = 0⟩ in the ground
state and |Je = 1,me = 0,±1⟩ in the excited state.
We now place our cooled atoms into magnetic field with a linear gradient by using a set of
magnetic coils in anti-Helmholtz configuration, as depicted in Fig. 2.1 c). This magnetic field
will split the magnetic sublevels me = −1, 0,+1 of the excited state Je, as shown in Fig. 2.1
b). We now consider what will happen with an atom at some position z in the magneto-optical
trap. The atom is in an EM field created by counter-propagating two laser beams with the same
laser frequency ωl but different circular polarization σ+ and σ−. Due to the splitting, the laser
will be detuned by different detunings δ+ (δ−) from the me = 1 (me = −1) magnetic sublevels.
Since at position z δ+ is smaller in value than δ−, the atom will preferentially absorb photons
from the σ+ beam. This will push atoms to the center of the trap. Conversely, at position z’,
δ− < δ+ is valid. The atom will then prefer to absorb photons from the σ− beam and again be
pushed towards the center of the trap. This effectively traps the atoms at the center of the trap
and prevents them from escaping.

2.2 The strontium atom

In the previous section we covered the basics of cooling and trapping of atoms, but haven’t said
anything specific about the properties of the atom we wish to use in our optical clock experi-
ment, strontium.
Strontium (Sr) is an earth-alkali chemical element with the atomic number Z=38. As an earth-
alkali element, strontium has 2 electrons in its outer [Kr]5s2 shell. Since the last two electrons
of strontium are in the s-shell, strontium has angular momentum L=0 in the ground state. Ad-
ditionally, as there are 2 electrons (both with s=1/2 spin) in the s-shell, the total spin can be
either S=0 or S=1. This will give raise to either a singlet (S=0) or triplet (S=1) states. Due to LS
coupling, total angular momentum J=L+S of the ground 1S0 singlet state will be J=0. The two
lowest excited p-states will be either the singlet 1P1 state with J=1 or triplet 3PJ with J=0,1,2.
Along with the electronic structure of strontium, we also need to consider its nuclear structure.
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Isotope Abundance (%) Nuclear spin (I)
88Sr 82.58 0
87Sr 7 9

2
86Sr 9.86 0
84Sr 0.56 0

Table 2.1: Abundances and nuclear spin for stable isotopes of strontium [44].

Strontium has 4 stable isotopes, listed in Table 2.1. The three bosonic isotopes 84Sr, 86Sr, 88Sr

all have even number of protons and neutrons and therefore have nuclear spin I=0. In bosonic
strontium optical clocks, the most commonly used isotope is 88Sr as it will give the best signal-
to-noise ratio of the clock transition due to its high natural abundance.
The last isotope we’ll consider is 87Sr. It is the only stable fermionic isotope of strontium,
with nuclear spin of I = 9

2
. Due to non-zero nuclear spin, 87Sr will have a hyperfine structure.

The hyperfine structure in atoms arises from interaction between the nuclear magnetic dipole
moment and magnetic field created from moving electrons in the electron cloud. To describe
this structure we define a new quantum number - total angular momentum F=J+I with mF be-
ing the projections of total angular momentum to the quantization axis. Each hyperfine energy
level contains 2F+1 magnetic sublevels which are degenerate in energy in abscence of external
magnetic fields. However, when an external magnetic field is applied, their degeneracy is bro-
ken and an energy shift of different sublevels is induced. The described effect is known as the
Zeeman effect. If the energy shift induced by magnetic field is small compared to the hyperfine
splittings, then F is a good quantum number and the interaction Hamiltonian is equal to [45]

HZ = µBgFFzBz, (2.1)

where µB is the Bohr magneton, Fz is the projection of the hyperfine quantum number F in the
direction of the quantization axis (in this case the z direction), Bz is the magnetic field in the z
direction and gF is the hyperfine Landé g-factor. The hyperfine Landé g-factors are named after
Alfred Landé who first described them in 1921 [46]. The hyperfine Landé g-factor gF is given
as [47]:

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
− µN

µB

gI
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
, (2.2)

where gJ and gI are the fine and nuclear g-factors, respectively, and µN is nuclear magneton.
Since µN << µB, the second term in Eq. 2.2 can usually be ignored. However, in the case of
87Sr, this term will be of great importance as it will create additional challenges in cooling and
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clock operation of fermionic strontium.

2.3 Cooling of strontium

Now that we have familiarized ourselves with the strontium atom, let us consider the relevant
transitions used in cooling of strontium. The most common method involves cooling in two
separate stages. First stage is done via the 32 MHz broad 5s2 1S0 → 5s5p 1P1 singlet transition.
The second stage is done via the much narrower 7.5 kHz 5s2 1S0 → 5s5p 3P1 intercombination
triplet transition. We will discuss both stages, for both 88Sr and 87Sr, in more detail in following
chapters. However, we should first explain the differences between narrow line and broad line
cooling. Historically, most of the early laser cooling experiments, such as those done on sodium
[38] or rubidium [48], were done on broad spectral lines. A spectral line of natural linewidth Γ

is considered broad if Γ
ωr
>> 1 where ωr/2π = ℏk2/2ma is the recoil frequency.

For the strontium 1S0 → 1P1 blue MOT transition with natural linewidth of Γ = 2π · 32 MHz,
this ratio is on the order of Γ

ωr
≈ 103. For the much narrower 1S0 → 3P1 red MOT transition

with Γ = 2π · 7.5 kHz, the ratio is only Γ
ωr

= 1.6. Such large difference in Γ
ωr

for the two tran-
sitions has a significant consequence on cooling dynamics. To consider cooling dynamics, we
first need to introduce saturation intensity Is and saturation parameter s.
Saturation intensity of a given transition with transition wavelength λ and upper state lifetime
τ is given as [40]

Is =
πhc

3λ3τ
, (2.3)

and where h is the Planck constant and c is speed of light. From this, we define an on-resonance
saturation parameter s0 as the ratio of intensity of light I and saturation intensity

s0 =
I

Is
, (2.4)

Finally, saturation parameter s for some atomic transition with linewidth Γ is given as

s =
s0

1 + (2∆/Γ)2
, (2.5)

where the transition is being driven by laser light with intensity I and detuned by ∆ = 2π · δ
from atomic resonance. Importance of saturation parameter can be explained by considering a
population of atoms in a two-state system (ground and excited state). For s << 1, population
will mostly be in the ground state. For s >> 1 the population will be equally distributed be-
tween ground and excited state. In other words, saturation parameter tells us how successfully
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we are transferring atoms between ground and excited state [40]. Additionally, because of sat-
uration, experimentally observed linewidth of a transition ΓE/2π will actually be broader than
natural linewidth Γ/2π

ΓE = Γ
√
1 + s0, (2.6)

Let us now return to narrow line cooling dynamics where we consider 3 different regimes as
first discussed in [1, 49]. The 3 regimes are controlled by s and ∆ [1]:
Regime (I) (s >> 1, |∆| > ΓE): Atoms are trapped in a box-like geometry. They experience
(near) free-flight behaviour between "hard" walls of the potential. Viscous damping settles
down the atoms to potential minimum of the MOT due to gravity.
Regime (II) (s >> 1, |∆| < ΓE): Atoms experience standard Doppler cooling described by
damped harmonic oscillator. Radiation pressure force will have a dispersion-shaped feature.
Regime (III) (s ≈ 1): Single photon interaction regime. Here recoil energy becomes important
and a full quantum mechanical approach is required [49, 50].
In red MOT cooling of strontium considered in this thesis, only regime (I) and (II) are employed.
Additionally, the small Γ

ωr
= 1.6 ratio of the narrow line transition will have a role to play for

the red MOT cooling of fermionic 87Sr, but more on that in latter sections.
In addition, the difference in the Γ

ωr
ratio for 1S0 →3 P1 and 1S0 →1 P1 transitions will affect

the maximum value of the radiation pressure force for the two transitions. Maximum value of
the radiation pressure force can be expressed with F = ℏkΓ

2
[40]. For a broad transition, such as

1S0 →1 P1, the maximum radiation pressure force is about 105 times larger than gravitational
force. This allows us to ignore gravity in conventional experiments with broad spectral lines.
For the narrow 1S0 →3 P1 red MOT transition in strontium, radiation pressure force is only 16
times larger than gravity [1, 49]. For intercombination transitions of lighter earth-alkali (such
as Ca and Mg), the cooling force is weak enough (i.e. the rate at which atoms repeat the cooling
cycles is low enough) that the force of gravity dominates and makes magneto-optical trapping
of atoms difficult or even impossible. This required development of alternative cooling schemes
[51, 52]. This makes gravity a significant effect in narrow line cooling.

2.4 Cooling of bosonic 88Sr

Let us now turn our attention to the cooling of specific isotopes of strontium. We’ll begin with
cooling methods for 88Sr. The energy structure with all transitions relevant for bosonic clock
operation, their lifetimes and linewidths is given in Fig. 2.2 and Table 2.2. Firstly, note that
the clock transition of bosonic strontium is strictly forbidden and has natural linewidth equal to
zero. Therefore, for purpose of comparison with the linewidths of other transitions in Fig. 2.2,
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I’ve put the linewidth of the fermionic 87Sr as well. More details on both fermionic and bosonic
clock transitions and their linewidth will be provided in the chapter on high-precision spec-
troscopy of the clock transition. As already stated, cooling of strontium is most commonly

5s5p 1P1
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5s5p 3PJ

5s6s 3S1
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2
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(repumping

transition)

707 nm

(repumping

transition)
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�

�

=260 �s�

689 nm

�=2� x 7.5 kHz
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698 nm

�~ 1 mHz (87Sr), 0 mHz (88Sr) 
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Figure 2.2: Relevant boson energy levels for 88Sr with corresponding lifetimes τ and linewidths Γ. The
full colored arrows show transitions (blue MOT transition, red MOT transition, clock transition, repump-
ing transitions) driven by different lasers in optical clock operation. The dashed black arrows show the
transitions (decay channels) not driven by lasers in optical clock operation. Additionally, note that the
bosonic clock transition is strictly forbidden due to J = 0 → J = 0 selection rule and therefore has nat-
ural linewidth equal to zero. Instead, the linewidth of fermionic strontium is provided, for comparison
purposes with other transitions.

done in two stages. Let us first discuss the first of two stages. The stage is usually referred
to as blue MOT cooling and uses the broad 5s2 1S0 → 5s5p 1P1 transition. The blue MOT
5s2 1S0 → 5s5p 1P1 transition is well suited for cooling and trapping. It has a broad spectral
line of 32 MHz. The short lifetime in the upper 1P1 will lead to a large scattering rate. This
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Transition Transition frequency (THz) Γ/2π Isat
5s2 1S0 → 5s5p 1P1 650.5037 32 MHz 42.7 mW/cm2

5s2 1S0 → 5s5p 3P1 434.8291 7.5 kHz 3 µW/cm2

5s2 1S0 → 5s5p 3P0 429.2280 1(0) mHz 87Sr(88Sr)
5s5p 3P0 → 5s6p 3S1 441.3327 1.4 MHz 0.7 mW/cm2

5s5p 3P2 → 5s6p 3S1 423.9135 0.56 MHz 3.2 mW/cm2

Table 2.2: Transition frequencies, linewidths and saturation intensities for transitions relevant in cooling
of strontium, taken from [4, 53, 54]. For the clock transition, linewidths for both the fermionic and
bosonic clock transition are given. Note that the linewidth for the bosonic clock transition is zero as it is
a double forbidden transition.

allows us to slow down atoms with initial velocities of few hundred m/s to just few m/s in about
1 second [28].
However, unlike in its alkali counterparts, the cooling transition isn’t completely closed as atoms
may decay to the 5s5p 3PJ triplet via the 5s6d 1D2 state. About 1 in 50000 atoms will decay
via this channel. From 1D2 state the atom can decay to either 3P1 or 3P2 state of the triplet.
The decay to 3P1 isn’t of great concern. Due to its short lifetime (compared to 3P2) of just
τ = 21.4 µs, the atom will quickly decay back into the ground state and return to the blue MOT
cooling cycle. The decay to 3P2 state is another matter entirely. The 3P2 (and 3P0) are both
long-lived meta-stable states. Should the atom end up in any of those two states, it will get
stuck there and effectively escape the cooling cycle. For this purpose most optical clocks use
two repumping lasers at 679 nm and 707 nm which pump the atoms into the 5s6p 3S1 state. The
selection rules allow the atom to decay from this short-lived state back to 1S0 via the 3P1 state.
Generally, one could avoid the use of repumping lasers, but this leads to a drop in the number
of cooled atoms by about an order of magnitude.
There are, however, a few experimental challenges in using the blue MOT transition. One
of them is the wavelength of the blue MOT cooling transition and the other is the relatively
high saturation intensity of 42.7 mW/cm2. Due to the transition being in the blue part of the
spectrum, where achieving high laser powers can prove challenging, this previously required
the use of Master Oscillator Power Amplifier (MOPA) systems which would inject light from
a master laser into a tapered amplifier and produced high laser powers (usually above 1 W)
at 922 nm which was then frequency-doubled to 461 nm via a doubling stage, usually in the
form of a resonant cavity doubler. However, recent developments in laser diode technologies
have brought to market both high-power blue laser diodes and injection-locked amplifier lasers
without MOPA and doubling stages, making the experimental requirements for the blue MOT
in strontium much less of a headache. A second experimental issue is a consequence of the
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broad natural linewidth. Such a broad linewidth requires a high magnetic field gradient of about
dB
dz

= 50 G
cm

which calls for high currents of about 100 A [6]. In addition, the broad transition
also causes a relatively high Doppler limit temperature. For the 32 MHz linewidth, Doppler
tempeture is about 1 mK. This temperature is insufficiently low for clock operation [55, 56]. In
terms of population, a typical blue MOT will have about 107 − 109 atoms [6, 49].
The use of the narrow 1S0 →3 P1 transition to further lower the temperature of atoms in stron-
tium MOT was first suggested by Hall et al. [57] and achieved experimentally by Katori et al.
[58] and Vogel et al. [59]. Due to the narrow linewidth of just 7.5 kHz [58, 59, 60], Doppler
temperature of atoms cooled via 1S0 →3 P1 is about 1 µK. However, there is an experimental
issue when swapping from blue to red MOT cooling. Due to the large difference in width of
the their Doppler profiles (i.e. the large difference in Doppler temperatures), it is not possible
to efficiently directly transfer atoms from the blue to the red MOT. In other words, the narrow
linewidth will make the red MOT laser interact with only a narrow class of atom velocities in
the blue MOT. This will lead to a large loss of atoms in the red MOT.
The solution proposed by Wallis and Ertmer [61] and implemented by Katori et al. [58] was to
modulate the laser frequency of 689 nm laser and artificially broaden the laser spectrum. The
modulation allowed matching of the Doppler profiles of red and blue MOTs. Such spectrally
broadened red MOT laser ensures that the atoms interact with different frequency components
and are continuously cooled. Therefore, red MOT cooling stage is usually divided into two
substages - broadband (BB) and single frequency (SF) cooling stage.
In broadband stage, the laser frequency of the cooling laser is artificially broadened by fre-
quency modulation. This increases the velocity capture range of red MOT and allows us to cool
the atomic cloud to temperatures on the order of a few dozen µK. This broadening of the laser
frequency during the broadband phase bridges the gap between blue (TDoppler ≈ 1 mK) and
SF (TDoppler ≈ 1 µK) red MOT phase. Additionally, during the broadband phase, the trapping
magnetic field gradient is ramped up from 1 G/cm to 10 G/cm to compress and increase the
density of the atomic cloud. In terms of detuning, during the broadband stage the laser is de-
tuned by about 0.5-1 MHz. Due to the low saturation intensity of 7 µW/cm2, total laser power
of a few mW of 689 nm light is sufficient to achieve regime (II) where standard Doppler cooling
mechanism take place.
In the final step the modulation is turned off, moving the cooling to regime (I) with single fre-
quency operation. In this regime, the atoms are cooled to their final temperature of around 1
µK and they can be loaded into an optical lattice.

14



Chapter 2. Theoretical background of optical clock operation

2.5 Cooling of fermionic 87Sr

The discussion so far made no comparison between cooling of different isotopes of strontium,
but it’s clear from nuclear spins in Table. 2.1 this is something which we must address before
continuing.
Out of the four stable isotopes of strontium, 87Sr sticks out as the only fermionic isotope with
nuclear spin of 9

2
which gives this isotope a rich hyperfine structure shown in Fig. 2.3. The hy-

perfine structure creates hyperfine isotopic shifts of different transitions of 87Sr when compared
to the bosonic 88Sr. These isotope shifts, given as the difference in transition frequencies be-
tween different hyperfine transitions of 87Sr and the corresponding 88Sr transitions, are shown
in Table. 2.3.

Isotope shift 1S0 → 1P1 (MHz) 1S0 → 3P1 (kHz)
1S0 → 3P0 (kHz)

87Sr− 88Sr -46.5 -62186.5 -62171
87Sr(F = 7/2)− 88Sr -9.7 1351933.1
87Sr(F = 9/2)− 88Sr -69 221676.6
87Sr(F = 11/2)− 88Sr -51.8 -1241485.8

Table 2.3: Isotopic frequency shifts of different hyperfine states of 87Sr from 88Sr for transitions rele-
vant to optical clock operation, taken from [6, 4, 62]. The isotopic shifts are given as the difference in
transition frequencies of hyperfine transitions of 87Sr and the corresponding transitions of 88Sr.

This structure created significant challenges in using 87Sr for clock operation. The difficulty
arises from the large difference in Landé g-factors of the ground 1S0 and excited 3P1 hyperfine
states and narrow linewidth of the 1S0 → 3P1 transition [63]. Let us examine this issue a bit
closer.
We begin again with blue MOT cooling. Blue MOT cooling of fermionic strontium uses the
singlet 1S0,F = 9/2 →1 P1,F

′ = 11/2 transition. The 88Sr− 87Sr isotope shift is about 52
MHz [4]. This shift in transition frequency is easily implemented by changing the frequency
of the blue MOT laser. Additionally, 3P2 state now also has hyperfine structure, spanning from
F′ = 5/2 to F′ = 13/2. An atom decaying from 1P1 state via 1D2 can therefore end up in any
hyperfine state of 3P2. To ensure proper operation of fermionic blue MOT, we again have to
pump atoms which end up in 3P2 into 3S1. This can be done by simply scanning the frequency
of 707 nm laser across all the hyperfine states. This will pump atoms from any hyperfine state of
3P2 into 3S1 [64]. The temperature of such a fermionic blue MOT will again reach the Doppler
limit [63]. The reduction in atomic population compared to bosonic blue MOT will be about an
order of magnitude. This reduction comes from the difference in natural abundances of the 87Sr

and 88Sr.
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Figure 2.3: Fermionic energy levels. Due to nuclear spin of I = 9/2, 87Sr has rich hyperfine structure.
The colored arrows shows the transitions (blue MOT, red MOT stirring and optical pumping, red MOT
trapping, clock and repumping) which are driven by different lasers in fermionic optical clock operation.
The black dashed arrows show the decay channels which are not driven by lasers.

Once atoms are loaded into the blue MOT, it is time to transfer them to the red MOT. For
fermions, red MOT cooling transition is the 1S0,F = 9/2 → 3P1,F

′ = 11/2 transition. When
this was first attempted by the Katori group, they found that the lifetime of fermionic red MOT
was ten times shorter than its bosonic counterpart [63]. Let us examine what makes red MOT
cooling of 87Sr so much different than blue MOT or cooling of an alkali atomic species, all of
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which have hyperfine structure too.
The answer is two-fold. Firstly, in traditional alkali atomic species, like rubidium and sodium,
ground and excited atomic states have similar hyperfine Landé g-factors gF (for ground and
excited states denoted as gg and ge in Fig 2.4 a), respectively). This means that in the presence
of a magnetic field B the resonant frequency for a given polarization is nearly independent of
ground state magnetic sublevel mF. In this case, an atom in any ground state mF, when placed
in magnetic field B(x) with linear gradient, will feel a restoring force towards the center of trap.
Behaviour described above is shown in Fig. 2.4 b) and corresponds to standard MOT operation
described in previous chapter.
Strontium, however, belongs to the group of earth-alkali elements. From Eq. 2.2 it is clear that
the hyperfine Landé g-factor gF of excited state 3P1,F = 11/2 state will have contributions
from both terms in Eq. 2.2 as F, J and I are all non-zero values. Since µN << µB, the biggest
contribution to gF comes from the term related to gJ.
The situation is quite different for the ground 1S0,F = 9/2 state. Since J = 0 and F = I, con-
tribution from gJ is zero. This means only the nuclear spin g-factor gn contributes to the total
g-factor of the ground state. Therefore, hyperfine Landé g-factor of the excited state (ge) is
much larger than g-factor of the ground state (gg). Due to such large difference in Landé fac-
tors, there exists a strong dependence of the transition frequency for different values of the
magnetic field. Zeeman shifts for different magnetic sublevels of excited state for the fermionic
cooling transition F = 9/2 → F = 11/2 have been depicted in Fig. 2.4 d).
To make importance of Landé g-factors in MOT trapping clear, we’ll consider a specific ex-
ample of an atom in the ground magnetic sublevel mg = 9/2. Due to selection rules, an atom
after the apsorption of a photon can end up either in me = 7/2 (green line in Fig. 2.4 d)) or
me = 11/2 (purple line) excited state. Due to small Landé factor of the ground state, the sign of
the Zeeman shift of these two possible sublevels is the same (both positive for z > 0 and neg-
ative for z < 0), in stark contrast with the alkali case where they always have different signs.
This means that an atom in some position z < 0 can absorb light beam with either σ+ or σ− po-
larization, pushing it either towards or away from the center of the trap. Luckily, in this specific
case, due to the large difference in Clebsch-Gordan coefficients (shown in Fig. 2.4 c)) the atom
has a 55:1 chance of absorbing the photon with the "correct" σ+ polarization and be pushed
towards the trap center. However, from Fig. 2.4 c), we can see that this ratio becomes less and
less favorable for smaller mg sublevels. An additional issue is the narrowness of the 1S0 → 3P1

transition. The ratio of the 1S0 → 3P1 linewidth to the recoil frequency is about Γ
ωr

= 1.6. This
means, if the atom absorbs only a few photons with the "wrong" polarization, it will be quickly
pushed out of resonance and escape the cooling cycle.
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Figure 2.4: Fermionic MOT operation compared to MOT operation of alkali atomic species. Comparison
of Landé g-factors for alkali (ge ≈ gg) and earth-alkali (ge >> gg) elements is shown in top left figure.
Position-dependent frequencies arising from magnetic field and transitions to higher (lower) magnetic
sublevels ∆mF = +1 (∆mF = −1) are shown with purple (green) lines. For alkali elements, splittings
of magnetic sublevels are shown in bottom left figure. For any position z in the trap, detunings of
magnetic sublevels mF+1 and mF−1 will always have opposite sign. This ensures an atom in state mF

will preferentially absorb photons from just one beam, trapping atoms in the MOT.
The splittings for strontium have different structure where mF + 1 and mF − 1 states can have the same
sign at some position z. An atom in the ground state mF = 9/2 at position z < 0 can absorb photons from
either beam, pushing it away or towards the trap. Owing to stronger Clebsch-Gordan coefficients (shown
in top right figure), the atom has a 55:1 chance of absorbing the photons which will push him towards
the center. Conversely, at z > 0, there are no states resonant with the laser beam for the mg = 9/2 state
and the atom will leave the trap and be lost. To resolve these issues, an additional "stirring" laser must
be introduced into red MOT cooling scheme for fermionic strontium. This stirring laser will drive the
1S0,F = 9/2 → 3P1,F

′ = 9/2 transition and perform a randomization of the magnetic sublevels of the
ground state. So if an atom is in an "unconvenient" ground magnetic sublevel for the cooling transition
to work properly, the stirring laser can cycle it so that in the next cycle it may have a more convenient
ground sublevel for trapping to work.
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The situation seems even more dire for an atom in some position z > 0. Here, there are no
excited states which are resonant with the atom in the ground mg = 9/2 state, so the atom will
simply drift out of the MOT and be lost. All of these issues reduce the lifetime of the fermionic
red MOT by an order on magnitude compared to its bosonic version. The solution to these
issues, suggested by Katori group in 2002 [63], was to add an additional "stirring" laser to the
red MOT cooling scheme, shown in Fig. 2.3. The stirring laser drives the F = 9/2 → F′ = 9/2

transition. This transition does not trap atoms (since ∆F = 0), but it can both cool and, more
importantly, optically pump atoms. In other words, the stirring laser performs a randomization
of the magnetic sublevels of the ground state, so if an atom is in an "unconvenient" ground
magnetic sublevel for the cooling transition to work properly, the stirring laser can cycle it so
that in the next cycle it may have a more convenient ground sublevel for cooling to work.

2.6 Optical lattices

Once we have cooled down our atoms to the range of about 1 µK it is time to load them into
an optical lattice before we can perform the high resolution spectroscopy of the clock transi-
tion. This section discussing optical lattices follows the approach laid out in Grimm et al. [65].
Dipole traps use far-resonant atom-light interaction to trap atoms in minima of laser light po-
tential. Due to the light frequency being far-resonant with any relevant atomic transition, there
is a low scattering rate of photons by the atoms.
The simplest model for dealing with atoms in dipole traps is the oscillator model where the
atoms are treated as dipoles in a classical EM field. A laser light field is generally given as
[5, 65]

E(r, t) = ϵ̂E(r)e−iωlt + c.c., (2.7)

where E (r) is the spatially dependent amplitude of light field polarized in direction ϵ̂ with
frequency ωl. The light field induces a dipole moment with polarization given as

p(r, t) = ϵ̂p(r)e−iωlt + c.c. (2.8)

The light field and induced polarization are connected through a simple equation

p = α(ωl)E, (2.9)

where α is the atomic polarizability. Atomic polarizability is a property of the atom. It provides
information about the reply of the atom with an electric dipole moment to an electric field
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imposed on the atom. Atomic polarizability generally depends on the internal structure of the
atom. The interaction potential between the induced dipole moment and the electric field is
given as

Udip = −1

2
< pE >= − 1

2e0c
Re(α)I, (2.10)

where field intensity is given by I = 2e0c|Ẽ|2 and e0 is vacuum permitivity. The angular
brackets denote the time average over the rapid oscillating terms. The real part of polarizability
describes the dipole oscillations responsible for dispersive properties of the interaction. The
imaginary part of polarizability, which describes absorbative properties of the interaction, in
< pE > is averaged to zero.
The imaginary part of polarizability does however appear if one considers the power absorbed
by an oscillator from the driving field, which is then re-emitted as dipole radiation

Pabs =< ṗE >= 2ωlIm(p̃Ẽ∗) =
ωl

ϵ0c
Im(α)I. (2.11)

As light is a stream of photons of energy ℏωl, the light-atom interaction can be interpreted as
scattering of photons in cycles of absorption and spontaneous emmission. This allows us to
define a scattering rate Γsc

Γsc(r) =
1

ℏe0c
Im(α)I(r). (2.12)

Now, Eq. 2.10 and Eq. 2.12 are physically correct, but the real and imaginary polarizability
makes them somewhat inconvenient to use. Luckily, it is possible to relate both the dipole
potential and scattering rate to more "experimental" parameters such as detuning, linewidth and
frequency of atomic transition, given as [65]

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r), (2.13)

Γsc(r) =
3πc2

2ℏω3
0

(
Γ

∆
)2I(r). (2.14)

These two equations give all the basic properties of a dipole trap. They can be simply connected
by the following equation

ℏΓsc =
Γ

∆
Udip. (2.15)

Let us consider the implications of this equation. First, it points to the importance of the detun-
ing.
For δ < 0, i.e. when the frequency of the laser is red-detuned from the relevant atomic transi-
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tion, the potential will be negative and attract atoms into the light field. The minima of potential
will correspond to maxima of light intensity.
For δ > 0, i.e. when the frequency of the laser is blue-detuned from the relevant atomic transi-
tion, dipole trap repels atoms out of the light field and minima of the potential is the minima of
light intensity. We therefore generally have two types of dipole traps - red-detuned (δ < 0) or
blue-detuned (δ > 0) traps. The optical potential is related to the intensity of light by Eqs. 2.10
and 2.13. Intensity of light from a single beam with Gaussian distribution is given as [65]

I(r, z) =
2P

πw2
0

e
−2r2

w2
0 , (2.16)

where P is power of the input light, r is the radial coordinate of intensity of light and w0 is the
minimum beam waist. Generally, waist of the lattice is a function of z along the axial direction
and is given as w(z ) = w0

√
1 + (z/zR)2 where zR = πw2

0 /λ is the Rayleigh length. However,
in Eq. 2.16 we assumed that the area which atoms take in the optical lattice (usually a few
hundred microns) is much smaller than the Rayleigh length (usually a few centimeters). This
removes the axial dependence of the lattice waist which simplifies the expression for lattice
potential in Eq. 2.10 and 2.13. The 1D lattice potential, created by a retro-reflected Gaussian
beam which forms a standing wave, is then given as [65]

U(r, z) = U0e
−2r2

w2
0 sin2(kz), (2.17)

where U0 is the depth of the optical lattice and r denotes the radial coordinate of the lattice
potential. Lattice depth U0, most commonly measured in energies of recoil Er, is an important
parameter of the optical lattice. It will tell us how well an atom is trapped within the optical
lattice and whether the atom can tunnel between lattice sites. More discussion on strength of
trapping of atoms in the lattice and effect of tunneling between sites on optical clock operation
will be provided in a later chapter.
An example of the potential of a two-dimensional (2D) optical lattice is shown in Fig 2.5. Four
counter-propagating beams form a 2D optical lattice potential. The red (blue) colored peaks
show regions of high (low) lattice potential with atoms (depicted as small spheres) loaded into
the minima of the lattice potential. Depending on detuning, atoms are either loaded into the
maxima or minima of light intensity for red and blue-detuned optical lattices, respectively. It is
important to mention that in 1D blue-detuned optical lattices there is no trapping of atoms in the
radial direction. Confinement in all three orthogonal directions can be achieved, for instance,
by a 3D optical lattice trap, made up of three independent 1D optical lattices [66].
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Figure 2.5: A two-dimensional (2D) optical lattice potential created by two orthogonal sets of of counter-
propagating beams. The lattice has a "box-of-eggs"-type shape. Red peaks (blue dips) respresent regions
of high (low) lattice potential. The atoms in an optical lattice are trapped in the minima of lattice poten-
tial.

2.7 Lamb-Dicke regime of the optical lattice

In the previous chapters, we have used the Doppler effect mostly to our benefit, employing it
along with recoil momentum of atoms to cool down and trap atoms in the MOT. Sadly, it is
time for us and photon recoil to go from friends to enemies. Our issue with photon recoil is the
following - during the spectroscopy of the clock transition, photons transfer their recoil momen-
tum to the atoms, perturbing the clock transition. This was first noted in paper by Dicke [67]
where he suggests that a recoil-free regime of spectroscopy could be achieved by the photon
transferring its momentum to the potential wall of the lattice instead of the atom.
From the quantum-mechanical point of view, total energy of the atom in a optical lattice poten-
tial can be separated into internal energy (energy of its electronic states) and external energy
(atoms vibrational states from motion of its center of mass in the well of the optical potential).
For the case considered by Dicke, the photon frequency ν of an atom trapped in a 1D square
potential of width a can be written as [67]

ν = ν0 + h/(8maa
2)(n2 −m2), (2.18)

with n and m being integer numbers, indicating the vibrational states and ν0 the frequency of
the unperturbed transition. The atom oscillating in the potential interacts with the walls of the
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well for an infinitesimal time, but there is a finite probability for the photon momentum to be
transferred to the well walls instead of the atom, given as P = sin2(πa/λ)

(πa/λ)2
. In other words, if the

atom is confined to a region smaller than a < λ/2 , the photon will not excite the vibrational
states of the atom, but instead transfer its momentum the walls of the potential. This particular
regime is called Lamb-Dicke regime1.
To see if an atom in an optical lattice is in the Lamb-Dicke regime, a parameter called the
Lambe-Dicke parameter is commonly defined. The Lamb-Dicke parameter is given as the
square root of the ratio of the photon recoil frequency ωr and the vibrational frequency of the
atom ωz

η =

√
ωr

ωz

= kzz0. (2.19)

The recoil frequency, defined earlier in section 2.3., is the frequency of photons of the probe
beam. The vibrational frequency ωz is the frequency of oscillations of the trapped atom in the
axial direction of the optical lattice, i.e. the direction of propagation of the counter-propagating
beams of the optical lattice. The vibrational frequency ωz is also referred to as axial Rabi
frequency. We can now approximate the lattice potential with a simple harmonic oscillator. For
the harmonic oscillator, the vibrational frequency is equal to ωz

2π
= ( 2U0

mazr
)1/2 [65].

Alternatively, Dicke parameter can be defined as η = kzz0 where kz is the wavevector of the
trapping field and z0 =

√
ℏ

2mωz
is the characteristic oscillator length (i.e. the width of the

motional wave function of the atom).
Lamb-Dicke regime refers to the condition when η2 << 1. To ensure this condition is satisfied,
the vibrational frequency ωz must be much larger than the recoil frequency ωr. This is achieved
by ensuring our lattice has very high lattice depth U0 , usually few dozen or hundred of recoil
energies. In that case, the atom is well trapped within the harmonic potential and the laser
spectroscopy of the atom shows 3 distinct resonances: A central carrier at ω0 which changes
only the atoms’ internal electronic state and two (red and blue) sidebands seperated by ±ωz

from central carrier which excite the electronic state and add (remove) a quantum of motion
[55, 68], as shown in Fig. 2.6.
The central carrier resonance corresponds to the |1S0, n = 1⟩ → |3P0,m = 1⟩ transition on left
figure in Fig. 2.6. The strength of the carrier is equal to the frequency of Rabi transition Ω of the
harmonic oscillator. The strength of the red (blue) sideband is reduced by the Dicke parameter
η. Additionally, we can define the well-resolved sideband regime Γ << ωz where the central
resonance is well seperated from the sidebands. In this regime we are able to estimate the axial

1More details on Lamb-Dicke can be found in original paper by Dicke [67] or e.g. [68].
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Figure 2.6: Possible transitions in the Lamb-Dicke regime. Scheme of the harmonic potential of the
ground and excited states of the clock transition is shown on the left figure. An atom confined in a har-
monic potential is in n=1 vibrational state of the ground 1S0 state. For |1S0, n = 1⟩ → | 3P0,m = 1⟩
transition, only the internal state of the atom will change. For the |1S0, n = 1⟩ → | 3P0,m = 2⟩ and
|1S0,n = 1⟩ → | 3P0,m = 0⟩, the atom will change both its internal and vibrational state. The reso-
nances corresponding to the three transitions are shown on the right figure. The spectrum features a
central resonance at the atomic transition frequency ω0 and red (blue) sideband shifted by −ωz (+ωz)

from the carrier. The strength of carrier and sidebands are characterised by the Rabi frequency of the
atomic transition Ω and the Dicke parameter η. Figure adapted from [68].

temperature of the trap by measuring the peak ratio of the two sidebands [5]

Tz =
ℏωz

kBln(
Ablue

Ared
)
, (2.20)

where Ablue

Ared
is the ratio of heights of blue and red sidebands.

The axial Rabi frequency also provides information about the lattice depth of the optical lattice
U0 from Eq. 2.17

U0 =
ℏ2ω2

z

4Er

. (2.21)

Along with oscillating in the axial direction, the atom can oscillate in the radial direction as
well. The oscillation frequency in the radial direction is called the radial Rabi frequency and is
given as

ωr =
λωz√
2πw0

. (2.22)
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An example of sideband spectroscopy of the clock transition is shown in Fig. 2.7 (left). With
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Figure 2.7: (left) Sideband spectroscopy of the clock transition for lattice depth of 85 Er giving an axial
lattice temperature of about 15 µK. The central peak corresponds to the clock transition frequency. Blue
points represent the population fraction in the excited clock state as a function of clock laser detuning
from the clock resonance. The blue line was added for better visual clarity of the central resonance.
(right) Lifetime of atoms in the trap. Blue points on the right figure represent the number of atoms in the
trap as a function of time atoms spent in the trap. An exponentially decaying function, represented by
sold blue line, was fitted to the data set. We find the lifetime of atoms in the lattice to be equal to 1.5(1)
seconds.

axial frequency of ωz = 64 kHz corresponding to lattice depth of 85 Er it gives an axial lattice
temperature of around 5 µK. Additionally, measurement of lifetime of atoms in the lattice is
shown of Fig. 2.7 (right). The number of atoms (blue circles in Fig. 2.7 (right)) in the lattice
as function of time the atoms have been loaded in the lattice was measured. An exponentially
decaying function (blue line in Fig. 2.7 (right)) was fit to the dataset and the lifetime of atoms
in the lattice was determined. In the measurement in Fig. 2.7 (right), the lifetime was found to
be τ = 1.5(1) seconds.

2.8 Atomic polarizability and magic wavelength

In the previous chapter we introduced atomic polarizability as a parameter which relates the
polarization of a dipole to an externally applied electric field. In other words, it provides infor-
mation about the reply of an electric dipole to electric field. We, however, didn’t go into any
specifics of the role atomic polarizability plays in operation of an optical clock. So let us briefly
speak more about it.
Theory of atomic polarizability is quite complex, so I’ll provide a simplified overview of the
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subject. A more in-depth discussion on the matter can be found elsewhere [69].
When an atom or molecule is in the presence of an external electric field, it will experience a
shifting and splitting of its spectral lines. This is the well known Stark effect. Additionally, the
Stark effect can be classified as AC or DC Stark effect, depending whether the electric field is
from an EM wave, i.e. a laser source (AC Stark effect), or from a static distribution of charges
(DC Stark effect). The shifting of the line caused by the AC Stark effect is referred to as AC
Stark shift or light shift. The term light shift comes from the fact that the shift happens due to
interaction between the atom and light. The shift in transition frequency ∆ω of some atomic
transition due to the AC Stark effect can be calculated by using perturbation theory [70]. The
leading contribution arises in the second order of perturbation theory, and it is quadratic in the
electric field and corresponds to the electric dipole term. The shift in frequency is given as [71]

∆ω = −1

4
∆α(ωl)E

2 − 1

64
∆γ(ωl)E

4
0 , (2.23)

where ∆α = αe − αg and ∆γ = γe − γg are the relative dynamic polarizabilities and hyperpo-

larizabilities between two atomic states, respectively. The term dynamic comes from the fact
that the source of the Stark shift is an oscillating electric field [71]. Hyperpolarizability is the
proportionality factor for the second term in Eq. 2.23, which is quartic in E. Hyperpolarizability
generally includes higher order corrections to the AC Stark shift. The discussion above raises
the question how the AC Stark shift affects our optical clock. Well, we wish for our 1S0 → 3P0

clock transition frequency to be unperturbed when probed with the 698 nm clock laser. By
loading atoms into a deep enough optical lattice we suppress the recoil shift (i.e. perturbations)
which would be induced by the 698 nm probe beam in the absence of an optical lattice.
On the other hand, we don’t want our lattice to induce an AC Stark on the clock transition. This
issue of lattice-induced AC Stark shift was resolved by Katori et al. [80] where it was proposed
that atoms be loaded into what was called a magic wavelength optical lattice. The main idea is
the following: to ensure there is no AC Stark shift from the optical lattice, the relative dynamic
polarizability ∆α must be equal to zero. For that to hold, we must choose a specific, magic

wavelength for our lattice. At this magic wavelength, the polarizability of the ground 1S0 and
excited 3P0 are the same, i.e. αg(ωmagic) = αe(ωmagic) and the electric dipole term in Eq. 2.23
will cancel out. The frequency of the clock transition will then be unperturbed by the AC Stark
shift and independent of the intensity of the trapping light (assuming higher order contributions
are neglible).
To determine the magic wavelength, we have to calculate the polarizabilities of the ground and
excited state of the clock transition (αg(ωl) and αe(ωl)) and find their intersect points. For this
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5s2 1S0 5s5p 3P0

Upper ωik ωik ξ Aik

state (2π x THz) (2π x THz) (x106s−1)
5s6s 3S1 - 2.773 1.071 84.6
5s7s 3S1 - 4.356 1.045 17.5
5s8s 3S1 - 4.984 1.039 8.22
5s9s 3S1 - 5.303 1.036 4.52
5s10s 3S1 - 5.487 1.035 2.77
5p2 3P1 - 3.97 1.036 127
5s4d 3D1 - 0.724 1.053 0.345
5s5d 3D1 - 3.899 1.01 61
5s6d 3D1 - 4.781 1.008 26.7
5s7d 3D1 - 5.192 1.008 14.2
5s8d 3D1 - 5.419 1.007 8.5
5s9d 3D1 - 5.59 1.007 5.5
5s5p 1P1 4.09 - - 190.7
5s6p 1P1 6.42 - - 1.86
5s7p 1P1 7.33 - - 4.3
4d5p 1P1 7.76 - - 14.5
5s8p 1P1 7.76 - - 16.7
5s9p 1P1 8.00 - - 11.7

.5s10p 1P1 8.17 - - 7.6
5s11p 1P1 8.28 - - 4.88

Table 2.4: Transition parameters used to calculate the atomic polarizabilities of the Sr clock states. The
transition radial frequencies from clock to upper states are given in 2π x THz and transition rates Aik

are given in 106 s−1. Parameter ξ are the correction factors needed for calculation of the excited clock
state [76]. All values are taken from [1, 2, 7] and references provided therein.

I will use the procedure as laid out in [1]. More precise methods, which also calculate higher-
order contributions to the AC Stark shift are available elsewhere [69, 72, 73, 74, 75].
The dynamic polarizability of an atomic state as a function of wavelength is given as [1]

α(ωl) = 6πϵ0c
3
∑
k

Aik

ω2
ik(ω

2
ik − ω2

l )
, (2.24)

where Aik are the transition rates between state i and excited states k while ωik are the transition
frequencies between state i and excited states k . The transition rates Aik can be related to the
lifetimes τ of atoms in the excited state as τ = 1

Aik
.

To calculate polarizabilities of ground 5s2 1S0 (excited 5s5p 3P0) clock transition we use rele-
vant transition frequencies and transition rates between ground (excited) state and other higher
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states given in [1, 2, 7] and references therein. Additionally, literature most commonly reports
the total transition rate Aik from a given excited state to the fine structure manifold below. Since
the excited clock state is part of a triplet manifold, we’ll also have to consider the branching
ratios from some higher state (e.g 3D1) to each fine structure sublevel of the 3PJ manifold. More
details on the procedure is provided in [1]. I would like to point out that magic wavelengths for
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Figure 2.8: Dynamic polarizability α of the ground and excited clock states (in atomic units (a.u)) as a
function of lattice wavelength λ. The insets show polarizabilities for the blue- and red- detuned optical
lattices with wavelengths of 390 and 813 nm.

the blue- and red-detuned lattice are already well known and were found to be at 389.889 nm
[77] and 813.428 nm [78, 79, 80], respectively. Note that in the papers referenced above, not
only the dynamic polarizability but higher order hyperpolarizability effects are considered. In
contrast, my own approach presented here is rather simplistic as it considers only the dynamic
polarizability.
Let us now to calculate the magic wavelength for a blue- and red-detuned optical lattice.
The dynamic polarizabilities of the ground 1S0 and excited 3P0 clock states as function of wave-
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length are given in Fig. 2.8 with polarizability given in atomic units (a.u.). The transition pa-
rameters in Eq. 2.24 used to calculate the polarizabilities of the two clock states are given in
Table 2.4, taken from [1, 2, 7] and references provide therein. The top inset in Fig. 2.8 shows the
polarizability of the ground and excited clock state in the region around 390 nm. Here my cal-
culations taken from the upper inset in Fig. 2.8 give a magic wavelength of λcalcb = 388.88 nm

which is within 1 nm (0.3%) of the reported value of λrepb = 389.889 nm [77].
For the more commonly used red-detuned optical lattice (bottom inset in Fig. 2.8) however, I
found a significantly larger disagreement. The previously reported value of red-detuned optical
lattice is λrepr = 813.428 nm, while my calculations give λcalcr = 823.3 nm. One possible reason
of such large discrepancy comes from the fact that in our calculations of polarizability we have
ignored the contribution of the continuum states (ωl → 0) to the scalar polarizability [2, 81] as
well as the fact I ignore the contribution of hyperpolarizability to the polarizability of the clock
states.
To examine this possibility, we can quickly calculate the values of αcalc

1S0
(0) and αcalc

3P0
(0). These

values of polarizability are calculated for ωl → 0 in Eq. 2.24. The polarizabilities are equal to
αcalc

1S0
(0) = 190.99 a.u. and αcalc

3P0
(0) = 350.9 a.u.. This is in good agreement with results from

[2, 73, 69] which give the polarizabilities to be αrep
1S0

(0) = 197.2 a.u. and αrep
3P0

(0) = 351 a.u. for
the ground and excited clock state, respectively. However, we must note the somewhat larger
discrepancy for the 1S0 state which may account for the larger difference between our calculated
λr and those reported. This is due to the fact that a red-detuned lattice has lower frequency and
is therefore more sensitive to contributions of the continuum states.
Finally, let us now turn to the calculated values of polarizability at the two magic wavelengths.
For the magic wavelength of blue-detuned lattice at λb = 388.88 nm the polarizabilities of the
ground and excited clock state are α1S0 = α3P0

= −459 a.u. which matches well with previ-
ously reported α1S0 = α3P0

= −455 a.u. [82]. For the red-detuned lattice, the scalar polariz-
ability at my calculated magic wavelength of λr = 823.3 comes out as α1S0 = α3P0

= 276.5 a.u.
Our calculated polarizability for the red-detuned lattice shows a larger deviation from polariz-
ability of α1S0 = α3P0

= 286.0 a.u., as reported in literature [74]. For the magic wavelength
of λr = 813.428 nm, we find the polarizabilities of the ground and excited clock state to be
equal to α1S0 = 279.6 and α3P0

= 286.9. We again find a more significant discrepancy for the
polarizability of 1S0 state from the one reported in literature.
This work may seem like an excercise in futility, but we will use some of these results in one
of the following sections when dealing with Wannier-Stark states in the optical lattice and pho-
toionization losses in a blue-detuned optical lattice. In any case, the AC Stark shift due to the
presence of optical lattice is currently controlled to the level of 10−18 at magic wavelengths and
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does not limit the operation of the optical clock.

2.9 High-precision spectroscopy of 1S0 → 3P0

The interrogation of a narrow line clock transition and digital lock of the clock laser to the
atomic line of the clock transition is the final frontier of any optical clock experiment. For
strontium, the 1S0 → 3P0 clock transition was for chosen of a variety of reasons. First, there
exist convenient magic wavelengths of the optical lattice, making the transition quite resistant
to perturbations due to Stark effect. Additionally, the transition is exceedingly narrow with
a predicted natural linewidth of Γ = 2π x 1 mHz for 87Sr. For bosons, the clock transition is
strictly forbidden and has natural linewidth equal to zero. This raises the question how is it then
even possible to have an bosonic optical clock. I will first quickly explain the narrowness of the
linewidth for fermions and then discuss bosons. The narrowness of the linewidth of 87Sr comes
from its hyperfine structure. Due to the hyperfine structure, there is mixing of the |3P0⟩ state
with other hyperfine states with the same hyperfine quantum number. Therefore, |3P0⟩ is not a
pure LS state (state due to coupling of atoms’ angular momentum L and spin S), but a mixture
of different states with the same hyperfine quantum number F=9/2 [1]:

|3P0⟩ = |3P 0
0 ⟩+ α̃0|3P1⟩+ β̃0|1P1⟩+ γ̃0|3P 0

2 ⟩, (2.25)

where α̃0, β̃0 and γ̃0 are hyperfine interaction mixing coefficients and superscript 0 denotes the
pure LS state. Both |3P1⟩ and |1P1⟩ can also be written as a superposition of pure LS coupling
states with the same J=1:

|3P1⟩ = α̃|3P 0
1 ⟩+ β̃|1P 0

1 ⟩, (2.26)

|1P1⟩ = −β̃|3P 0
1 ⟩+ α̃|1P 0

1 ⟩.

Combining Eqs. 2.25 and 2.26 the upper clock state in 87Sr can be written as a superposition of
pure states:

|3P0⟩ = |3P 0
0 ⟩+ (α̃α̃0 − β̃β̃0)|3P 0

1 ⟩+ (α̃0β̃ + β̃0α̃0)|1P 0
1 ⟩+ γ̃0|3P 0

2 ⟩. (2.27)

This mixing of different states produces a non-zero linewidth of the clock transition. However,
this is only valid for fermionic strontium whose hyperfine structure enables mixing of different
states. For bosons, the clock transition is completely forbidden. To induce a coupling between
the two clock states, first a coupling between 3P0 and 3P1 needs to be induced. To do that, a
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Figure 2.9: Magnetically induced spectroscopy of the forbbiden clock transition in bosonic optical clock.
The use of a strong bias magnetic field induces a coupling between the 3P0 and 3P1 state. Because of
it, the upper clock state is not longer a pure state but a mixture of the two states. Due to this mixing,
the bosonic clock transition becomes weakly allowed, enabling the operation of a bosonic optical clock.
ΩB is the coupling matrix element between the two excited states due to the strong magnetic field, while
ΩL is the matrix coupling element induced by the electric field of the clock transition probe beam. The
clock transition is given by ω21, the detuning between the upper two states of the triplet is given by ∆32

and decay rate from the 3P1 state is given by γ. More details on magnetically induced spectroscopy are
given in the main text and are available in Taichenachev et al. [83].

strong bias field B combined with quite high intensity in the clock transition probe beam needs
to be employed. This method, called magnetically induced spectroscopy, was first proposed by
Taichenachev et al. [83]. Then the upper clock state is given as [83, 84]

|3P0⟩ = |3P 0
0 ⟩+

ΩB

∆32

|3P 0
1 ⟩, (2.28)

where ΩB = ⟨3P0|µ̂·B|3P1⟩
ℏ is the coupling matrix element between the two states, µ̂ is the

magnetic-dipole operator and ∆32 is the splitting between the two states. Due to the mixing
in Eq. 2.28, the clock transition in bosonic strontium becomes weakly allowed, enabling the
operation of a bosonic optical clock. The Rabi frequency for the clock transition is then equal
to Ω12 =

ΩLΩB

∆32
where ΩL = ⟨ 3P1|d̂·E| 1S0⟩

ℏ is the matrix coupling element induced by the elec-
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tric field of the clock transition probe beam. From there, the linewidth of the bosonic clock
transition is given as [83]

γ12 ∼ γ
Ω2

L/4 + Ω2
B

∆2
32

. (2.29)

This broadening effectively comes from the fraction of population transferred by the two fields
to the |3⟩ state, which decays with a rate γ. As this broadening is inversely proportional to
the square of the large frequency splitting ∆32 between the two states, it is an extremely small
quantity, usually on the order of microhertz [83]. Only by applying high magnetic field can
the line be sufficiently broadened to be experimentally detectable. This method of enabling the
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Figure 2.10: Optical clock cycle in an optical clock. Atoms are first cooled in the two stage cooling (blue
and red MOT) and then loaded into the optical lattice. The clock transition is then interrogated by the
clock beam. Finally, in the detection stage, the populations of atoms in the ground and excited state are
measured. First, the atoms in the ground 1S0 clock state are excited using a 461 nm probe beam and the
flourescence of the decaying atoms is measured on a CCD camera. Then, atoms in excited 3P0 clock
state are repumped through 3S1 to the ground state using the 707 nm and 679 nm lasers. The atoms are
then excited using the 461 nm laser and the flourescence of the decaying atoms is again measured on the
CCD camera.

clock transition doesn’t come without a cost. The use of bias magnetic field and high intensity
probe beam induces a large shift of the clock transition, affecting the accuracy of the optical
clock. This will be discussed more in one of the following chapters when I’ll present the accu-
racy budget of our optical clock measured during a recent campaign.
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To perform a high-precision spectroscopy of the optical clock transition, we optically inter-
rogate the clock transition on an ensamble of atoms loaded in the optical lattice. After the
interrogation, a portion of the atomic population will be transferred to the upper 3P0 clock state,
with the rest of the atoms remaining in the ground 1S0 state. To measure the populations in the
two clock states we use the detection method shown in Fig. 2.10. By using a 461 nm floures-
cence probe beam, atoms in the ground clock state are excited to the 1P1 state and then we
measure on a CCD camera the flourescence produced by the emitting atoms as they relax back
to the ground level. However, this is a destructive detection method as probing by flourescence
beam will eject the atoms out of the optical lattice.
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Figure 2.11: Spectroscopy of the 1S0 −3 P0 of bosonic strontium. A Lorentz function is fitted to the
measured data, giving a measured linewidth (FWHM) of 27(1) Hz. Taken from [28].

At that point, atoms in the excited clock state are transferred to the ground state by using the
repumping beams at 707 and 679 nm. This method is called electronic shelving. The repumpers
will transfer atoms firstly to 3P1 via 3S1, and then atoms will decay to the ground state. We then
again measure the population of the transferred atoms by using the 461 nm probe beam and
measuring the flourescence produced by the atoms. This probing will again blow atoms out of
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the optical lattice. This means that after each detection stage is completed, atoms need to be
loaded into the optical lattice again by using the procedure explained earlier in this chapter.
For the high-precision spectroscopy of the clock transition, we plot the fraction of the population
in the excited clock state Pe

Pg+Pe
as a function of detuning of the clock transition interrogation

beam where Pg and Pe are populations of atoms in the ground and excited clock state after inter-
rogation of the clock transition. You should note, that what you see in each of the flourescence
pictures taken is proportional to the populations, and the proportional coefficient shortens in a
fraction.
An example of the high-precision spectroscopy of the clock transition for bosonic strontium is
given in Fig. 2.11. A Lorentz function is fitted to the measured data, giving a FWHM linewidth
of 27(1) Hz [28].
Now, in the low saturation limit, the amplitude of the sidebands from Fig. 2.7 is at least an
order of magnitude smaller than the amplitude of the clock transition, limiting the linewidth of
the transition to the Fourier limit. Therefore, the primary limit to the linewidth comes from the
interrogation time of the clock transition, which is in turn limited by the coherence time of the
laser. Current state-of-the-art lasers stabilised to high-finesse fused-silica Fabry-Perrot cavities
operated at 124 K reach fractional uncertainty of 4x10−17. This fractional uncertainty translates
into laser linewidths below 10 mHz and laser coherence times of up to 55 seconds [85].
Finally, once the atomic line of the clock transition is located, the clock laser is digitally locked
to the atomic resonance. This is done by measuring the population fraction to the left and right
of the clock resonance (i.e. red- and blue-detuned from resonance). From the difference in pop-
ulation fractions a correction signal is generated. With a feedback loop, we then compensate
for any drift of the clock laser frequency from the clock transition, digitally locking the clock
laser to the clock transition.
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Feasibility of blue magic wavelength
optical lattice clocks

This section will present our work on measurements of photionization cross sections of 1P1

and 3S1 states in 88Sr in blue magic wavelength optical lattice. It will also present my work
on examination of feasibility of using blue magic wavelength optical lattices. Finally, it will
show calculations of photionization induced losses of atoms in a blue magic wavelength optical
lattice clock and possible ways to mitigate those losses. My work in particular will focus on
calculations of Wannier and Wannier Stark states in blue magic wavelength lattice. I will exam-
ine two different cases - the Wannier states in a horizontal optical lattice and the Wannier-Stark
states in a vertical optical lattice. Our goal in this section is to determine both the experimental
requirements, possible issues and critical defects in using blue magic wavelength optical lattices
in optical atomic clocks.

3.1 Confinement of atoms in blue-detuned optical lattice

As mentioned above, in a blue-detuned magic wavelength optical lattice, atoms are confined
at the minima of light intensity as opposed to a red-detuned magic wavelength optical lattice
where they are loaded into maxima of light intensity. However, the atoms cannot be trapped
in a simple 1D blue-detuned magic wavelength lattice trap because they will escape along the
radial directions. Confinement in all three orthogonal directions can be achieved, for instance,
by a 3D optical lattice trap, made up of three independent 1D optical lattices [86]. Moreover, a
3D optical lattice will reduce the influence of interactions between atoms on the optical clock’s
accuracy. To examine the feasibility of using blue-detuned optical lattice in an optical clock, we
must check the experimental requirements and possible impediments to its use in clock opera-
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tion and compare it with the commonly-used red-detuned optical lattice. To do just that, we will
use the approach presented in Lemonde et al. [87] when making comparisons between results
for commonly used red-detuned latices and the blue-detuned optical lattices. We consider an
atom emerged into the periodic potential of an optical lattice with the periodicity equal to half
the wavelength of the lattice λ

2
. We will study two seperate cases: case a) atom in a horizontally

oriented lattice where there is no contribution of the gravity to the Hamiltonian and case b)
where the lattice is vertically oriented and gravity contributes to the total Hamiltonian.
This is not to say that there is no gravity at all in case a). But we are interested in the motion of
the atom in the axial direction of the lattice so we can examine the tunneling between different
lattice sites, calculate atoms’ energy levels and wavefunctions with the goal of learning about
the real experimental requirements to ensure for the atom to be in the Lamb-Dicke regime. And
for the horizontal lattice, all of this happens the x or y direction, while gravity is perpendicular
to it (in z direction) and therefore it has no influence on the energy levels and wavefunctions of
the atom.
This will be radically different once we consider case b) when gravity will play an integral role
in explaining the tunelling effects in a vertical lattice. Clearly, a vertical case presents a more
complicated case, and so we shall begin with the easier case - the horizontal optical lattice.

Case a: The horizontal optical lattice

We begin as any 3rd year undergraduate student would, by writing out the Hamiltonian of the
atom in the horizontal lattice:

H(q) =
ℏq2

2ma

+
U0

2
(1− cos(2klx)), (3.1)

where q is the atoms’ quasimomentum and kl is wavevector of the optical lattice with periodicity
of π

kl
. Lattice depth U0 is usually given in units of recoil energy Er =

(ℏkl )2
2ma

. It should be noted
that we’ve elected to ignore the radial direction of the potential and have decided to focus only
on the axial direction. At this point, we use the periodicity of the optical lattice and employ
Bloch’s theorem which simply states that the wavefunction of a particle in a periodic lattice
must be of the form [89, 90]

ψn,q(x) = un,q(x)e
iqx, (3.2)

where un,q(x ) and ψn,q(x ) are Bloch functions and Bloch waves, respectively. Both Bloch
functions and Bloch waves are dependent on quasimomentum q and energy band quantum
number n with Bloch functions being generally periodic with λ

2
. In quasimomentum space,

this corresponds to the periodicity of Brillouin zones and we can therefore limit the range of the
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quasimomentum q to the 1st Brillouin zone q ∈ [−kl , kl ].
Due to periodicity of the lattice, Bloch waves are also periodic ψn,q(x) = ψn,q+Qm(x) with
Qm = 2mkl ,m ∈ Z. This periodicity also allows us to write both the potential and and Bloch
functions as a Fourier series

V (x) =
∑
m

Ṽ (m)eiQmx, (3.3)

un,q(x) =
∑
m

ũn,qe
iQmx. (3.4)

By inserting Eq. 3.4 and Eq. 3.2 into Eq. 3.1, we get a tridiagonal N x N Hamiltonian matrix
[89]

...

... U0
2

ℏ2(q+Qm−1)2

2ma
+ U0

2
U0
2 0 ...

... 0 U0
2

ℏ2(q+Qm)2

2ma
+ U0

2
U0
2 ...

... 0 0 U0
2

ℏ2(q+Qm+1)2

2ma
+ U0

2 ...

...





...

ũn,q(m− 1)

ũn,q(m)

ũn,q(m+ 1)

...


= ϵn(q)



...

ũn,q(m− 1)

ũn,q(m)

ũn,q(m+ 1)

...


where ϵn(q) are the energy bands we wish to calculate. To do so, we first must truncate our matrix at

some maximum index m and find the eigenenergies of the Hamiltonian. But before dive into it, let us also

consider the Bloch wave functions with regards of physics of an atom in a lattice. It is well known that

Bloch states describe delocalised quantum states which span through the entire potential. But we aim to

describe an atom in the Lamb-Dicke regime of the lattice where the atom is effectively localised within a

single lattice site. Clearly, the Bloch states will not do. What we can do is define a set of functions given

as the discrete Fourier transformation of the Bloch wave functions with respect to the site locations, with

each such defined function centered around a lattice site of the potential [89]. This will localise a state

within a single lattice, just as one would expect for an atom in the Lamb-Dicke regime. Such states are

called Wannier states and are given as

wn(x− xi) =
1√
N

∑
q∈BZ1

e−iqxiψn,q(x), (3.5)

where xi are the site locations of the lattice potential.

In a horizontal lattice, atoms with the same vibrational quantum number n located in neighbouring lattice

sites are degenerate in energy with the degeneracy simply coming from the symmetry of the optical

lattice. This degeneration amplifies the tunelling between neighbouring wells, spatially spreading the

atoms’ position wavefunction across multiple lattice sites. The tunnelling between different sites creates

a band structure in the energy spectrum of the atom in the lattice. This will shift and broaden the linewidth

of clock transition once the atoms is probed by the clock laser [87]. The energy bands of Eq. 3.1 are
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Figure 3.1: Band structure for 3 lowest energy bands (n=0,1,2) for a blue-detuned optical lattice with
lattice depth of 2 Er. Interaction of the atoms in the lattice with the clock laser allows them to jump
between energy bands.
(right) Bandwidth, defined as

|En,q=kl
−En,q=0|
ℏ , given as a function of lattice depth for the 3 lowest energy

bands. To achieve clock stability of 10−18, band width should be ≈ 1 mHz which requires lattice depths
of ≈ 90 Er for the atoms in the ground band.

usually represented as shown in Fig. 3.1. The broadening of the clock transition due to the existence of the

band structure is usually described with a bandwidth parameter
|En,q=kl

−En,q=0|
ℏ of a band. Dependence

of the bandwidth on lattice depth for the 3 lowest energy bands is shown in Fig. 3.1 (right). To achieve

clock stability of 10−18, bandwidth should be ≈ 1 mHz which requires lattice depths of ≈ 90Er for the

atoms in the ground band [87].

Case b: The vertical optical lattice

We now turn our attention to the more complicated of the two cases where atoms are trapped in a vertical

optical lattice. Due to the presence of gravity, the atom will now experience a tilted optical lattice, as

shown in Fig. 3.2 and such a lattice no longer supports bound states. In principle an atom trapped within

some lattice site will eventually tunnel out into continuum, but the lifetime of a quasi-bound state grows

exponentially with lattice depth and even for shallow lattices depths of 5 Er the lifetime the state is on the

order of 1010 s which is much longer than the duration of the experiment [87]. The external Hamiltonian

of the atom in the vertical lattice is given as

H(q) =
ℏq2

2ma
+
U0

2
(1− cos(2klz)) +magz, (3.6)

with gravity lifting the degeneracy between energy states in adjacent wells. The energy separation

between adjacent states corresponds to the change in gravitational potential between adjacent states

ℏ∆g = mag
λ
2 . Since this Hamiltonian doesn’t have bound states, the analysis from previous subsec-
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Figure 3.2: External lattice potential as seen by atoms in a vertical optical lattice. The linear contribution
of gravity tilts the lattice and the lattice no longer supports bound states. An atom trapped in ground state
(black horizontal line) of a lattice site would eventually tunnel into the continuum, but even for shallow
lattices of 5 Er the lifetime of the quasibound state in 1010 s [87].

tion is no longer possible and so to examine the case of the vertical optical lattice we have calculate the

eigenstates of the lattice. These eigenstates are called Wannier-Stark (WS) states |Wm⟩ where m denotes

the m-th well of the lattice. In the tight-binding approximation, WS states can be calculated as a super-

position of Wannier states wm where each Wannier state is weighed by the appropriate Bessel function

[88]. The WS states in position representation centered around m = 0 lattice for different lattice depths

for a blue- and red-detuned optical lattice are shown in Fig. 3.3. In the calculation of WS states, we

also assume that the atom can only tunnel to the nearest and second-nearest neighbouring lattice sites

(located at z = −2,−1, 1, 2 on x axis of Fig. 3.3). As seen in Fig. 3.3 (right), for the widely used 813 nm

optical lattice, a Wannier-Stark state consists of a "central" peak and two smaller "revival" peaks, even

for very shallow lattices of 5 Er . For lattice depth of 10 Er , the revival peaks are already a hundred

times smaller than the main peak and the wavefunction is localised in a single lattice site and tunneling

between neighbouring lattice sites is strongly suppressed.

By comparison, similar main-to-sidepeak ratios in a blue-detuned optical lattice require twice the lat-

tice depth, i.e. 20 Er due to shorter distance between lattice sites due to smaller lattice wavelength and

smaller degeneration of energy states in adjacent lattice sites.

Let us now add a probe laser (i.e. the 698 nm clock laser) which will couple the internal ground |g,Wm⟩
and excited |e,Wm′⟩ state of the atom in the lattice. This coupling creates a structure called the Wannier-
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Figure 3.3: Wannier-Stark (WS) states in position representation for different lattice depths for 390 nm
(left) and 813 nm (right) magic wavelength lattices. For 813 nm optical lattice with lattice depth of 10
Er , the revival peaks will already be two orders of magnitude lower than the central peak, indicating
strong localisation of the atom in a single lattice site and strong suppression of tunnelling between lattice
sites. For the 390 nm optical lattice, similar revival-to-peak ratio requires lattice depth of 20 Er , posing
more stringent experimental requirements on blue magic wavelength lattice depth to ensure Lamb-Dicke
regime.

Stark ladder of states and is shown in Fig. 3.4. The ladder is made up of a set of WS states with a single

state in every lattice site. Due to the coupling between the internal ground and excited atomic state in-

duced by the probe laser, and atom in the ’central’ ground |g,Wm⟩ WS state can couple either into the

excited WS state in the same lattice site |e,W′
m⟩ or it can couple to one of the adjacent |e,Wm′±1, ⟩ or

second-adjacent |e,Wm′±2, ⟩ states by tunnelling between lattice sites. Each of these couplings is de-

scribed by different coupling strengths Ωm. The internal ground and excited state are coupled by probe

frequency ωeg and the splitting between energy levels of WS states in adjacent lattice sites is given by

ℏ∆g. The coupling between the ground and excited WS states due to the probe laser results in a transla-

tion in momentum state by eikcẑ where kc is the wavevector of the probe laser. The couplings are given

as

Ω∆m = Ω⟨Wm|eikcẑ|Wm′ ⟩, (3.7)

with Ω being the Rabi frequency. In these calculations, we’ll set the Rabi frequency at Ω
2π = 10 Hz. The

relative coupling strengths |Ω∆M
Ω |2 of the "carrier" Ω0 and the first 4 "sidebands" Ω±1,±2 as a function

of lattice depth are shown in Fig. 3.5 for both the blue-detuned (left) and red-detuned (right) optical

lattice. For the 813 nm lattice (Fig. 3.5 (right)), coupling strength of the "carrier" quickly rises to unity
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Figure 3.4: Wannier-Stark ladder of states for the ground and excited clock states. An atom is initially in
the ground Wannier-Stark (WS) state |Wm⟩ for m=0 (i.e. |W0⟩) in the optical lattice for the electronic
clock ground state |g⟩. The atom is then excited into the excited clock state |e⟩ by the clock probe beam
with frequency ωeg, where ωeg is the transition frequency of the clock transition. The atom can then
couple into different excited Wannier-Stark states |Wm′⟩ where m′ = −2′,−1′, 0′, 1′, 2′. Coupling into
each excited WS state is characterized by different coupling strength Ωm (m=-2,-1,0,1,2). The splitting
between adjacent WS states due to gravity is given as ℏ∆g.

and the atom oscillates with the Rabi frequency within the "central" lattice site with strong suppression

of tunnelling to neighbouring lattice sites. For the 390 nm lattice (Fig. 3.5 (left)), we see strong Rabi

oscillations for lattices shallower than 10 Er similar to those reported by Tackmann et al. [91]. Beyond

that point, the "carrier" goes to unity while the sidebands quickly fall off. Let us compare the coupling

strengths of the carrier and the sidebands for the two cases we’ve considered earlier - 10 Er deep red-

detuned lattice and 20 Er deep blue-detuned lattice. For both cases we get similar relative coupling

strengths to the nearest and second-nearest lattice sites, |Ω±1

Ω |2 and |Ω±2

Ω |2, respectively. The coupling to

the nearest lattice site |Ω±1

Ω |2 is 10−2 smaller than the carrier, while the coupling to the second-nearest

lattice site |Ω±2

Ω |2 is 10−4 times smaller than the carrier coupling strength. This again shows that to

achieve similar levels of trapping and suppression of tunnelling, a blue-detuned optical lattice requires a

lattice depth twice as deep compared to a red-detuned optical lattice.

To calculate the populations of the ground and excited WS states, we consider the evolution of the excited
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Figure 3.5: Relative coupling strengths |Ω∆M
Ω |2 of the "carrier" Ω0 and the 4 "sidebands" Ω±1,±2 for

a blue-detuned (left) and red-detuned (right) optical lattice as a function of lattice depth. For the red-
detuned lattice, the coupling strength of the carrier Ω0 quickly rises to unity with increasing lattice depth,
ensuring strong trapping of the atom in a single lattice site and preventing tunneling. For the blue-detuned
lattice there are strong oscillations in coupling strengths. This will allow strong coupling of the atom in
|W0⟩ WS state to adjecent |Wm′=±1,±2⟩ states. To prevent tunnelling to these states, higher lattice depths
are required for the blue-detuned lattice.

and ground state under coupling to the probe laser. The evolution is given by a set of coupled differential

equations [87]

iȧgm =
∑
m′

Ω∗
m−m′

2
e−iπm

′
kc/ke

i∆
m−m

′ tae
m′ ,

iȧem =
∑
m′

Ωm′−m

2
eiπmkc/ke

−i∆
m

′−m
t
ag
m′ ,

(3.8)

where agm and aem are the probability amplitudes of the ground and excited state, respectively. The

detuning between different ground and excited WS states is given as ∆m−m′ = ω − ωeg + (m−m
′
)∆g.

The populations of the WS states are simply absolute squared values of the probability amplitudes. We

will calculate these populations using the 4th order Runge-Kutta method (RK4). The resonances for

different lattice depths for blue- and red-detuned optical lattice are shown in Fig. 3.6. The resonances

were calculated for the central lattice site and its’ nearest and second-nearest neighbouring site with

each resonance appearing at the multiples of ∆g/(2π) with ∆g/(2π) = 866 Hz for red-detuned and

∆g/(2π) = 422 Hz for the blue-detuned lattice. These central and neighbouring resonances correspond

to the central peak and the 4 "sidebands", respectively.
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Figure 3.6: Calculated Wannier-Stark resonances for 5, 10 and 20 Er lattice depths for blue-detuned (left
figure) and red-detuned (right figure) optical lattices. For the red-detuned 813 nm lattice, the sideband
resonances decay quickly with increased lattice depth due to the fast rise of the relative coupling strength
of the carrier on Ω0 to unity (green line in Fig.3.5 (right)). With coupling strength Ω0 near unity for 20
Er , the atom can only couple from |W0⟩ to |W0′⟩ (see Fig. 3.4) and leaving only the central resonance
for 20 Er . For the blue-detuned optical lattice, there are strong oscillations in the sideband resonances.
To prevent coupling of the atom into the sidebands, the lattice depth must be twice as deep compared to
the red-detuned lattice (20 recoil energies for the blue-detuned lattice versus 10 recoil energies for the
red-detuned lattice).

Let us once again compare the two lattices. For the red-detuned lattice (right side of Fig. 3.6), the

situation seems quite clear - with increasing lattice depth the probability of finding an atom in once of

the adjacent lattice sites falls off exponentially [87] and for even for very shallow lattice of just 10 Er the

atom is effectively trapped in the central lattice site with strong suppression of tunnelling to side states.

This is in line with Fig. 3.5 as in a red-detuned lattice the coupling strength for the carrier Ω0 is larger

than any of the sidebands Ω±1,±2 for all 3 chosen lattice depths.

The situation is quite different for the blue-detuned lattice. For the shallowest lattice depth of 5 Er ,

the resonance at the second-nearest neighbouring site is as strong as the resonance in the central lattice,

implying strong tunneling between lattice sites. This unusual behaviour stems from the fact that for 5 Er ,

the coupling strengths Ω0 and Ω2 are almost equal in value while Ω1 is 2 orders of magnitude smaller.

This allows atoms to go from ground Wm state with near equal chance to excited Wm′ or Wm′±2 state

while spending very little time in the Wm′±1 as represented by small resonances at the nearest neighbour

at 422 kHz. Similar behaviour appears for the 10 Er lattice with very strong resonances in the side

lattice sites. However beyond this lattice depth, the coupling to the central lattice site quickly rises to
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unity while coupling to sidebands plummets. And therefore, for a lattice depth of 20 Er , the atom is again

strongly trapped in a single lattice site with almost no probability of tunneling. Finally, it is worth noting

that to achieve similar central-to-first-side band peak ratios for red- and blue-detuned optical lattice (and

therefore similar trapping levels), a blue-detuned lattice requires twice the lattice depth (20 Er for a blue-

detuned versus 10 Er for its red-detuned counterpart). This is in line with conclusions reached when we

discussed WS states in Fig. 3.3.
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3.2 Photoionization of atoms in blue-detuned optical lattice

In the previous sections, we’ve mostly talked about possible advantages of using blue magic optical

lattices in optical clock operation, primarily the fact that in blue-detuned lattices atoms are loaded near

minima of light intensity, reducing light-induced pertubations of the clock transition. However, before we

declare victory, we have to consider possible downsides as well. One of main downsides is the possibility

of single-photon photoionization of atoms by the blue magic wavelength lattice. If the energy of a blue

magic wavelength photon is higher than the ionization threshold of some atomic state used in optical

clock cycle, this may cause loss of atoms during the cooling/detection stage of the cycle, reducing the

signal-to-noise ratio when measuring the frequency of the clock transition. The schematic energy level

diagram for different transitions in clock cycle along with the ionization threshold for 390 nm light are

shown in Fig. 3.7. As we can see, the 1S0 → 3P0 clock transition is safe as both states are outside the

dashed lines in Fig. 3.7, meaning that blue magic photons don’t have sufficient energy to ionise atoms

in either clock state. However, both the 1P1 and 3S1 state can be affected by photoionization for the

blue-detuned lattice, potentially creating photoionization loss channels during both loading of the blue

MOT and repumping during detection via 3P0 → 3S1 and 3P2 → 3S1 transitions. To examine how the

photoionization of 1P1 and 3S1 affects the clock operation, we first measured the photoionization cross

sections of the two states. To determine the σ3S1 and σ1P1
cross sections, two separate experimental

methods were used. To measure σ1P1
cross section, we compared the dynamics of loading of atoms

into blue magneto-optical trap with and without the presence of ionizing blue-detuned magic wavelength

light. On the other hand, to measure the σ3S1 cross section, we examine the change in ground and excited

clock state populations during a standard clock cycle by introducing blue-detuned magic wavelength

ionizing light during the repumping in the detection phase of the clock cycle1.

3.2.1 Photoionization of 1P1

To determine the photionization loss rate from blue magic wavelength ionizing light, we examine the

loading rates of atoms into the blue MOT with and without the ionizing blue-detuned magic wavelength

light. In general, the rate equation for number of atoms loaded into a magneto-optical trap is given by

the following equation [92]

dNSr

dt
= LSr − (γSr + γp)NSr − βSr−Sr

∫
dr3n2Sr, (3.9)

where LSr is the loading rate of atoms into the blue MOT, γp and γSr are the loss rate from photionization

and loss rates from all other channels such as collisions with background gases and optical pumping to

1I should point out that I was not directly involved in this part of the experiment as the measurements of σ3S1

and σ1P1
cross sections were performed prior to my arrival at KL FAMO, primarily by Marcin Witkowski and

Vijay Singh. My contribution was in calculating the loss rates from the two channels, where I also used my results
from the previous section regarding Wannier-Stark states of atoms in blue magic wavelength optical lattice.
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Figure 3.7: Schematic energy level diagram showing relevant optical transitions used in the basic cycle
of a strontium optical lattice clock. The 405 nm wavelength corresponds to the autoionization resonance
(4d2 + 5p2) 1D2. The states belonging to the area bounded by the dashed lines are potentially affected
by the photionization light at 389.9 nm. Adapted from [66].

the metastable states, respectively, βSr−Sr is the loss rate from light-assisted collisions between Sr atoms

and nSr is the spatial density of trapped atoms. Our experiment was run in the so-called low density

regime. In this regime, the mean free path of an atom is much larger than the size of atomic cloud. Blue

MOT cloud usually has a diameter of about 2 mm in diameter with around 108 atoms giving a density

of about 1011 cm−1. With a collision cross-section of 10−13 cm−1 [93], the mean free path of atom is

about 100 cm which is much larger than the size of the atomic cloud. This allows us to ignore the last

term in Eq. 3.9. Integrating Eq. 3.9 over time gives us the dependence of number of atoms on time of

MOT loading as

NSr(t) =
LSr

γSr + γp
(1− e(γSr+γp)t). (3.10)

Loss rate from photoionization γp is connected to the intensity of ionizing light Ip as

γp = ρ1P1
σ1P1

Ip
hνp

, (3.11)
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where ρ1P1
is the fraction of atoms in the excited 1P1 state and hνp is the photon energy of ionizing

light. Before we can calculate the loss rate of 1P1, we still need to measure the photoionization cross

section. We sequentially load two blue MOTs, one in the presence of ionizing light and one without,

and record their loading curves. The sequence is shown Fig. 3.8 and the loading rates are given in

Fig. 3.9. By fitting Eq. 3.10 to both loading rate curves, we found the γSr + γp and γSr loss rates at

which point finding the photoionization loss rate was easily calculated as their difference. The loss rates

were γSr = 34.08(80) s−1 and γSr + γp = 37.9(1.5) s−1 which corresponds to the reduction of the 1/e

MOT loading time from 29.34(69) ms to 26.38(10) ms. To determine the fraction of atoms in the excited

0 0.5 s 1 s

ionisation 390 nm

blue MOT 461 nm

Figure 3.8: The timing sequence of the lasers used in the 1P1 photoionization experiment. The time
of the blue MOT’s loading phase is identical in each sequence. To record the background from the
ionisation laser beam, it was kept on for a 200 ms longer compared to MOT’s loading phase duration

1P1 state, a two-state system approximation model was used

ρ1P1
=

1

2

I461
Isat

I461
Isat

+ 4(∆Γ )
2 + 1

, (3.12)

where I461 is the total intensity from blue MOT cooling beams, ∆ is laser detuning from the transition,

and Isat and Γ = 2π · 32 MHz are the saturation intensity and linewidth of 1S0 →
1
P1 transition, respec-

tively. To calculate ρ1P1
, we assumed typical conditions in blue MOT with total intensity of blue MOT

light as I461 = 6 x 30 mW/cm2 coming from 6 different beams, all detuned by ∆ = 1.5 Γ. From this,

Eq. 3.12 gives the fraction of atoms in the excited state to be ρ1P1
= 0.027.

At this point we are ready to find the cross section for 1P1 state. To do that, we use a CCD camera to

take pictures of blue MOT during interaction with ionizing light and detect the atomic distribution which

is well described with a Gaussian distribution

N(x, y) =
2N0

πrxry
e

−2x2

r2x e
−2y2

r2y , (3.13)

where rx , ry are radii of blue MOT, usually around 1.2 mm. From this we can find the average intensity

of ionizing beam light ⟨IP ⟩ seen by the atoms in blue MOT

⟨Ip⟩ =
∫ ∫

I(x, y)N(x, y)

N0
dxdy, (3.14)
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Figure 3.9: Typical fluorescence of 88Sr atoms detected while loading into the blue MOT in the presence
(left) and in the absence (right) of the photoionizing 389.889 nm light. The solid blue and red lines depict
fitted Eq. 3.10. Adapted from [66].

where N0 is the total number of atoms in blue MOT and I (x , y) and N (x , y) are the distributions of

intensity of ionizing light and atoms in blue MOT, respectively. Distribution of intensity of ionizing light

was found by taking a picture of incoming beam with CCD camera.

We now have all the parameters needed to measure the photoionization cross section for 1P1 state. The

results are shown in Fig. 3.10. To be sure in our method of measuring the photoionization cross section,

we measure the photoionization cross section in the range from 378 nm to above 405 nm. In this range

exists an autoionization resonance of (4d2 + 5p2) 1D2 at around 405 nm. These types of asymmetric

resonances appear due to interference between the background and resonant scattering process and are

called Fano resonances [94].

By fitting a Fano profile to the data in Fig. 3.10, we have determined that the resonance is centered

at λr = 405.196(44) nm with peak value of σr = 5.20(94) · 10−19 m2. These results were consistent

those previously reported [95, 96], but with our work being on cold atomic samples. Of course, our
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Figure 3.10: The photoionization cross section from the 1P1 state as a function of the wavelength of the
ionizing light. The solid red line is a Fano profile fitted to the measured data. The fitting range is limited
to the experimental points above 392 nm to exclude another possible resonance below 389.9 nm.

interest lies in examining the photoionization losses from blue magic wavelength light at 389.9 nm. From

Fig. 3.10 we can simply ready the photoionization cross section and find it to be 2.20(50) · 10−20 m2.

Our result is consistent with the value of 1.46(29) · 10−20 m2 deduced from the curve reported by Mende

et al. [95] within the 20% uncertainty claimed by the author. At this point we are ready to calculate the

photoionization loss rates due to blue magic wavelength light.

This is also the point where my contribution in the photoionization part of the article [66] begins as I

was tasked with calculating the loss rate. Firstly, we need to remember than in the optical clock cycle the

ionisation from blue magic wavelength light doesn’t come from a single non-retroreflected beam but an

optical lattice. We therefore must first calculate the average intensity of light in a blue-detuned optical

lattice.

In my calculations I assumed we have 3 separate 1D blue-detuned optical lattices, all with the lattice

depths of 20 Er (for which we have showed we have good trapping in the blue-detuned lattice). For
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purposes of simplicity, I also assumed no radial dependence on intensity, focusing only on the axial

direction. By averaging light intensity from this 3D optical lattice (averaged over time and space), we

get an average light intensity experienced by atoms in the periodic potential of optical lattices to be

I3Dp ≈ 2.1 · 108 W/m2. From Eq. 3.11 we get a loss rate of γ1P1
≈ 2.4 · 105 s−1.

Let us compare this photoionization loss rate with other loss channels. Assuming that blue MOT lifetime

is limited by the collisions with the residual background gas molecules, the order of magnitude of the

loss rate γSr in Eq. 3.10 in a real experimental system can be approximated by the collisional loss rate

due to the collisions with H2 molecules [97], which gives collisional loss rate of γSr ≈ 0.4 s−1. Another

loss channel appears due to atoms’ decay into the metastable 3P2 state when there are not repumpers

during blue MOT loading. This loss rate is around γSr ≈ 35 s−1[66].

We can clearly see that the photoionization loss rate from blue magic wavelength light is few orders of

magnitude larger than any other loss channel. From Eq. 3.10, we see that γp will lower the number of

atoms by a factor of 105, effectively depleting the blue MOT in the region where it overlaps with the

optical lattice.

Luckily for us, the solution in this case is quite simple - one can simply reduce the lattice intensity or

even turn off the lattice completely during the blue MOT phase. Temporary switching off lattice light

is technically feasible, even with the power build-up cavity installed inside the vacuum setup on a low

expansion glass spacer. The lattice laser can be safely switched back on and relocked during the red

MOT phase, which lasts a few tens of ms. Since the red MOT phase states 1S0 and
3P1 are below the

photoionization threshold of blue magic wavelength light, there will be no photionization of atoms by

the lattice from those states.

3.2.2 Photionization of 3S1

As mentioned above, to measure the photionization cross section of 3S1 state, we used a different ap-

proach compared to the one for 1P1. We measure the photionization cross section of 3S1 during the

detection phase of a standard optical clock cycle. The timing sequence of the laser beams used in the

experiment is shown in Fig. 3.11. The sequence consists of two separate clock cycles with the first cycle

having the photionization light from blue magic beam turned on during repumping in the detection phase,

and the second cycle providing the background.

The cycle is designed as follows: After the atoms are cooled in the blue and red MOT phase, they are

cold enough (around 1 µK) to be loaded into an optical lattice. Once loaded, they are probed by an

interrogation laser pulse, long in duration compared to the Rabi oscillation frequency.

This interrogation, applied exactly at the clock transition frequency, splits the atomic population sending

half of the atoms into the excited 3P0 clock state while leaving the other half in the ground 1S0 state. At

this point, we use the 461 nm imaging probe beam to excite the atoms in the ground state to 1P1 and

measure their flourescence with the CCD camera. Subsequently, atoms in the 3P0 are tranferred to 1S0

by repumping them through 3S1 using 707 nm and 679 nm laser light. After another imaging pulse at
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BLUE MOT 461 nm

RED MOT 689 nm

LATTICE 813 nm

IMAGING 461 nm

CLOCK PROBE 698 nm

REPUMP 679 nm, 707 nm
IONISATION 390 nm

Time (ms)
0 1000

Figure 3.11: The timing sequence of the lasers used in the 3S1 photionization experiment. It consists of
two clock cycles, the first one (left) with added photoionizing pulse, the second one (right) providing a
background. Adapted from [66].

461 nm, we again measure the flourescence of atoms with a CCD camera. This concludes the standard

clock cycle as depicted on left part of Fig. 3.11. The measured flourescences are used to calculate the

initial ratio of populations of the ground and excited clock state.

The crucial difference in our experiment here is adding the blue magic wavelength ionizing beam during

repumping in detection phase. By adding this ionizing beam we allow the atoms to be photoionized

while in 3S1 state. This will be seen as a change in the population ratio of ground and excited clock state

as the photionization would’ve removed a portion of atoms in the excited clock state from the optical

lattice. To determine the photionization cross section of 3S1 state we use the following equation

σ3S1
=

∆Ne

Ne

hνp
⟨IP ⟩teff

, (3.15)

where ∆Ne = Ne −N I
e is the difference between number of atoms which are succesfully repumped

from excited to the ground clock state with and without the presence of the ionizing beam, labeled as N I
e

and Ne , respectively. ⟨IP ⟩ is average intensity of the photoionizing beam and teff is the effective interac-

tion time of the atoms in the 3S1 state and the photoionization beam. From the transition probabilities of
3S1 → 3P2 and 3S1 → 3P0 [98] and natural lifetime of 3S1 [99, 74] this interaction time was calculated

to be teff = 43 ns. To ensure stability of the number of atoms throughout each experimental cycle, we

monitored both ground state populations with and without the presence of the photoionization beam (N I
g

and Ng , respectively). Any experimental point for which the difference between N I
g and Ng was larger

than 2% was excluded from the measurement. Also, for our results be less prone to the oscillations of the

number of atoms, we made the interleaved measurements randomly staggered by manual triggering of

the consecutive cycles. With an ionizing beam intensity of ⟨IP ⟩ = 26270(80) W/m2, we find the σ3S1

photoionization cross section to be equal to σ3S1 = 1.38(66) · 10−18 m2.

To calculate the loss rate from photionization rate from 3S1, I used a similar procedure as for 1P1 in

previous subsection. I first calculate the intensity of blue-detuned magic wavelength light experienced
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Figure 3.12: The total effective intensity Ieff experienced by the atoms trapped in the motional ground
state of a 3D blue-detuned magic wavelength optical lattice. Ieff values were calculated for Wannier-
Stark (Wannier) states for the vertical (horizontal) directions in the optical lattice (blue asterisks) and
Gaussian states (orange crosses) in a harmonic potential approximation.

by the atoms in the optical lattice and then use Eq. 3.11 to find the correct loss rate. However, since in

this case we have atoms in the optical lattice, I won’t be calculating the average intensity like I did for
1P1. Instead, I define an effective intensity Ieff,ξ which the atoms experience in the 3D optical lattice

potential

Ieff,ξ =

∫
|ΨM (ξ)|2I(ξ)dξ with ξ = x, y, z, (3.16)

where ΨM (ξ) are the Wannier (Wannier-Stark) eigenfunctions of atoms in a horizontal (vertical) optical

lattice potential I (ξ) = I0 sin
2 (kξξ) where kξ is the wavevector of blue-detuned magic wavelength light

and I0 is the maximum intensity of light in each of 1D traps in ξ direction. The total effective intensity

from 3 1D optical lattices is then given by Ieff =
∑

ξ Ieff ,ξ. Its dependence on the depth of the optical

lattice is shown in Fig. 3.12 where 3U0 is the total amplitude of the all 3 1D lattice potentials. The

blue asterisks in Fig. 3.12 represent the total effective intensity calculated for Wannier-Stark (Wannier

states) for vertical (horizontal) optical lattice and the orange crosses respresent the Gaussian states in

harmonic potential approximation. If we now again consider 3 independent 1D optical lattices, each

with lattice depth of 20 Er , this gives us effective intensity of Ieff ≈ 4.6 · 107 W/m2 for total lattice

depth of U3D = 3 x 20 Er = 60 Er . From Eq. 3.11 we then get the loss photionization loss rate for
3S1 state to be equal to σ3S1 = 1.26 · 108 s−1 which is on the same order as the 3S1 state decay rate

due to the natural lifetime. Such large loss would effectively remove all atoms from the optical lattice

during repumping in the detection phase of the optical clock cycle, making it a critical defect in using
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blue-detuned optical lattices in optical clocks. A possible solution to this problem is using alternative

repumping scheme through the 3DJ state [100, 101] which are below the single-photon photoionization

threshold of blue-detuned optical lattice.
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Strontium optical clock experiment in KL
FAMO

The National Laboratory of Atomic, Molecular and Optical Physics (KL FAMO) in Toruń, Poland,

houses two separate bosonic optical clocks, which we’ll refer to as Strontium 1 (Sr 1) and Strontium 2

(Sr 2). This section will cover the redesign and upgrading done on Sr 1 clock during my stay in Toruń.

The goal of the redesign was to allow for both bosonic and fermionic clock operation in Sr 1. Prior to its

upgrade the optical clock was capable of only bosonic clock operation.

I feel obliged to point out that bosonic optical clock was constructed and was fully operational long

before my arrival to KL FAMO. However, I have decided to put the entirety of the setup, even those parts

constructed without my contributions, into this thesis to provide the full picture of our experiment. In the

following sections I will, of course, do my best do differentiate between my own work and work of other

members of the group, as well as state which portions of the setup were completed prior to my arrival to

KL FAMO.

4.1 High-finesse optical cavities for 689 nm and 698 nm lasers

The key component of any optical clock setup is its high-finesse optical cavity which is used to spectrally

narrow the ultra-stable lasers while also serving as a short term frequency reference. In our case, we have

two such optical cavity setups, one for the 689 nm red MOT trapping laser and the other for the 698 nm

clock laser. The optical cavity setups are similar in design. Both cavities are made from 100 mm long

ultra-low expansion (ULE) glass with optically contacted silica mirrors and with free spectral range of

1.5 GHz. The key difference between the two cavities is the finesse of the optical cavity, which is equal to

F=62800 for the 689 nm red MOT laser and F=300000 for 698 nm clock laser [28]. For the 698 nm clock

laser, this provides a laser spectral linewidth below 1 Hz, which is necessary for the probing of the clock
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transition. The linewidth is achieved by using a Pound-Drever-Hall (PDH) locking scheme1. The setup

for one of the cavities is shown in Fig. 4.12. The high-Q cavity is located inside a thermally-stabilized
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Figure 4.1: The high-finesse optical clock cavity setup for the 698 nm clock laser. A setup consisting
of 698 nm clock master laser coupled into a high-finnesse optical cavity and frequency-locked via PDH
method is presented. Additionally, two fiber noise-cancellation setups are shown. Abbreviations used in
figure: FP-Fabry interferometer, FC- frequency comb, PBS- polarizing beam splitter, NC- noise cancella-
tion, EOM- electro-optic modulator, AOM- accusto-optic modulator, λ

2 - half-wave plate, λ
4 - quarter-wave

plate.

vacuum chamber which is installed on an optical breadboard. The remainder of the setup from Fig. 4.1

(aside from the laser itself) is installed on the same optical breadboard. A fraction of the light from the

698 nm laser is coupled into the high-finesse cavity and stabilized to the cavity via Pound-Drever-Hall

(PDH) locking scheme [102]. The rest of the light is sent through 2 separate acousto-optic modulators

(AOM) and coupled into two optical fibers. Light from one of the fibers is sent to a separate room where

our frequency comb (FC) is located. There, the light from the 698 nm is used to create a beatnote signal

with the frequency stabilized frequency comb. This beatnote3 is used for monitoring and control of the

laser frequency for optical clock operation. The beam from the second fiber is sent directly to the experi-

1Described in more detail in one of the following sections.
2This setup was designed and constructed prior to my arrival at KL FAMO, but I took part in upgrading it

during my stay.
3Part of my work in upgrading of the optical clock setup.
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mental setups in Sr 1 and Sr 2 where it is injected into their respective slave lasers. Additionally for each

optical fibers, a phase-noise cancellation setup had been constructed which suppresses the perturbation

the optical phase of the light during transfer of light through the fiber and limits the spectral broadening

of light4.

Figure 4.2: Installation of granite plates onto the anti-vibrational platform to reduce the overall load on
the platform. Multiple dia-sorbothane hemisphere rubber bumpers were installed on both sides of the
granite plates to ensure proper weight distribution across the entire platform.

The optical breadboard with the cavity is mounted on an anti-vibration isolation platform. A set of 6

lead plates were placed in between the breadboard and the antivibration platform to provide additional

suppression of vibrations and to ensure the total weight of the setup is within the operating range of the

anti-vibration platform. This entire setup was placed into an acoustic isolation chamber, thus ensuring

4For more details, see chapter 4.7.1.
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thermal, vibrational and acoustic isolation of the high-finesse cavity from external perturbations. Re-

gardless, during clock operation, the short- and mid-term stability (1 second to 10 second scale) of the

optical clock was limited. We found that these issues arose at least partly due to the vibrations of the

optical cavity. These vibrations were caused by a flaw during initial design of the cavity setup where

the lead plates placed between the breadboard and the platform were effectively too heavy, pushing the

total weight of the setup beyond the operational range of the anti-vibrational platform. This prevented

"floating" of the anti-vibrational platform. To fix this issue, I replaced the lead plates with lighter granite

plates5, shown in Fig. 4.2. Additionally, we placed a large number of 0.75" diameter Dia-Sorbothane

Hemisphere Rubber Bumpers on both sides of the granite plates to ensure proper weight distribution

across the entire platform. With these improvements completed the anti-vibration platform was rein-

stalled into the acoustic chamber and the optical breadboard was lowered onto it. I then successfully

"floated" the anti-vibration platform.

4.2 Vacuum setup

The schematic for the vacuum setup is shown in Fig. 4.36. The setup consists of a strontium oven, a

Zeeman slower with mu-metal magnetic shielding and the main vacuum chamber. The strontium oven

and Zeeman slower are separated by a valve. The valve is closed if the experiment isn’t operating to

prevent unnecessary accumulation of strontium atoms on the windows of the vacuum chamber. The oven

is made up of two connected full nipple flange fittings. On one side the nipples are closed off by a flange

and the other side connected to the Zeeman slower and vacuum chamber. The two nipples are connected

by copper nickel-plated gaskets. The nipple further from the chamber is used as a depository of 99.99%

pure dendritic strontium.

Due to low vapor pressure of strontium at room temperature, the strontium inside the oven must be heated

up to high temperature, usually in the range of 400-700 oC. For this purpose, a heating wire is densely

wound around the outer surface of the two nipples and wire ends connected to a high voltage power

supply. Driving the current through the wire heats up the wire and the heat is then contact transferred to

the nipples, increasing the temperature inside the nipples. Additionally, multiple temperature sensors are

placed on different points along the nipple surface for monitoring and control of oven temperature. To

achieve sufficiently high temperatures, the oven is thermally isolated from the environment.

The other nipple is used for creating an atomic beam of strontium atoms. Inside the nipple, a custom-

made U-shape holder is placed. Dozens of stainless steel capillaries are placed and tightly packed on the

inner surface of the U-shaped holder. The capillaries are 0.8 cm long with external and internal diameters

of 0.03 cm and 0.02 cm, respectively. The capillaries are mutually collimated to a high degree. In this

way, the capillaries serve as a collimator of the atomic beam. At their output, the capillaries collimate

5With assistance from other members of the POZA team
6Vacuum was constructed by Marcin Bober and other members of the POZA team long before my arrival to

KL FAMO.
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optical lattice

Figure 4.3: Schematic of the ultrahigh vacuum setup in KL FAMO. The setup consists of an oven, a
Zeeman slower with mu-metal magnetic shielding and vacuum chamber. Blue and red arrows indicate
laser beams, green arrow is the atomic beam. Taken from [28].

the atomic beam into the Zeeman slower, with flux of 1013 s−1 and beam divergence of about 25 mrad

[103].

To ensure good vacuum in this section of the setup, a cross element is installed between the oven and the

valve. On each side of the cross profile, and ion pump is installed, as shown in Fig. 4.3. This ensures

vacuum of about 10−8 mbar is this part of the setup when the oven is turned on.
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4.3 The Zeeman slower

Due to high temperature in the oven, the atoms in the atomic beam upon exiting the capillaries have a

mean velocity of about 500 m/s producing a large Doppler shift. Therefore, any laser beam trying to

slow the atoms down will need to be strongly red-detuned. In our experiment, this detuning is about
∆
2π = −500 MHz from the blue MOT transition. Additionally, such high velocity is beyond the capture

velocity limit, meaning that the 3D MOT beams are incapable of cooling them down sufficiently quickly

for the atoms to be trapped inside the MOT. Therefore, atoms have to be slowed down prior to their

trapping. For this purpose we use the Zeeman effect inside the Zeeman slower.

Figure 4.4: Magnetic field created by the Zeeman coils and simulated fields with and without the mag-
netic shielding. Two sets of coils are wound in the Zeeman slower with 3 A and 9-14 A currents running
through them, respectively. Taken from [103].

The general idea behind the Zeeman slower is simple - a laser beam is red-detuned from the 1S0 → 1P1

transition and counter-propagated to the atomic beam through the Zeeman slower. We then create mag-

netic field B(z) with a linear gradient b’ along the path of the atomic beam, where z is direction of

propagation of the atomic and laser beam. In such conditions, the laser beam will, at some position z, be

detuned by δ
′
= δ + k · v − b′z where k · v and b’z are Doppler and Zeeman shift, respectively. With
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appropriate choice of gradient b’, the Zeeman shift b’z will be able to cancel out the Doppler shift at

each point of the slower. In other words, as the atom slows down, the laser is moved out of resonance

with the atomic transition due to the Doppler shift. By using the magnetic gradient, we compensate for

this Doppler shift. This will ensure that the laser can continuously slow down atoms in the atomic beam.

In this way, atoms in the atomic beam with velocities of few hundred meters per second will be slowed

down to only few meters per second and can then be captured by the blue MOT beams in the main vac-

uum chamber. The magnetic field along different points of the Zeeman slower is shown in Fig. 4.4 [103].

The schematic for the Zeeman slower is shown in Fig. 4.5 [103]. The slower is a 30.5 cm long, water-

cooled solenoid with a 3 A current going through the coil, producing a magnetic field with a range of 600

Gauss (from -300 G to 300 G). This field range allows slowing down of about 35-40% of the initial flux

with initial velocity as high as 450 m/s. By the time the atomic beam reaches the main vacuum chambers,

atoms are slowed down to about 31 m/s and can be loaded into the blue MOT. Obviously, the use of such

Figure 4.5: Schematic design of the Zeeman slower. Coil length is 30.5 cm with inner diameter of 32
mm. Taken from [103].

high magnetic field would have a negative impact on clock operation as we wish for our atoms to be free

of any perturbation by electric or magnetic field while clock is in operation. For this purpose a special

two-layer magnetic shield made from pure iron and mu-metal layer was designed. This shield prevents

the magnetic field of the coils of the Zeeman slower from penetrating to the chamber where the cooling

and trapping of strontium in the blue MOT is performed, while also allowing for a higher field gradient

to be created at the end of the slower. More details on design of the Zeeman slower is available in [103].

The vacuum chamber is a stainless steel Kimball-Physics extended spherical octagon with windows with

anti-reflection coating. The MOT gradient field is produced by two solenoids in anti-Helmholtz config-

uration in custom-made holders which are installed along the main axis of the chamber. The solenoids
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are water-cooled to protect the coils wire from damage. The solenoids produce a gradient field of about

60 G/cm. Additionally, 3 sets of compensation coils in Helmholtz configuration are placed in 3 orthog-

onal directions (x,y,z) to compensate any stray magnetic field. Finally, during the upgrade to enable both

bosonic and fermionic clock operation, we installed an additional set of magnetic coils. These coils are

to be used during optical pumping in the fermionic clock operation cycle.

4.4 Blue MOT on 1S0 → 1P1 transition

The relevant transition frequencies and laser detunings for the 1S0 → 1P1 transition for 88Sr and 87Sr

are given in Fig. 4.6 while the experimental setup is shown in Fig. 4.7. The transition frequencies of two
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Figure 4.6: Relevant frequencies for 88Sr and 87Sr blue MOT operation. Frequencies of different laser
beams and isotope shifts of different 1S0 → 1P1 hyperfine transitions of 87Sr are all given relative to
the 1S0 → 1P1 transition of 88Sr. The solid purple (blue) lines represent detunings of different bosonic
(fermionic) blue MOT transition(s). The dashed purple (blue) lines represent detunings of 3D MOT
and Zeeman slower beams needed for bosonic (fermionic) blue MOT operation. The black line is the
detuning of the 461 nm laser.

isotopes are separated by 46.5 MHz [6] with a linewidth of the atomic transition of 32 MHz [103].

For blue MOT cooling we use a 922 nm Toptica TA-SHG 100 laser. A master laser diode at 922 nm

is fed into a tapered amplifier which increases the light output to about 1.5 W of power. The light is

then frequency doubled in a resonant doubling cavity in bow-tie arrangement producing around 400

mW of 461 nm light. The 461 nm master laser is then frequency locked to 1S0 → 1P1 transition with

a frequency-shifted saturation spectroscopy [104]. By placing AOM 1 in the path of the beam used for

saturation spectroscopy, we effectively create a frequency shifter, allowing us to the change the frequency

lock point of the 461 nm laser. Additionally, three seperate AOMs are used for the flourescence probe

beam, Zeeman slower and 3D MOT cooling (AOMs 2, 3 and 4 in Fig. 4.7, respectively). Frequencies of

AOMs used in Fig. 4.6 and detunings of corresponding beams from the bosonic 1S0 → 1P1 transition

are given in Table 4.1.
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AOM AOM RF shift (MHz) laser beam beam δ 88Sr (MHz) beam δ 87Sr (MHz)
1 2 x -75 (-95) saturation spectroscopy -150 -140
2 2 x -175 Zeeman slower -500 -490
3 1 x 110 3D blue MOT -40 -30
4 2 x -75 flourescence probe 0 0

Table 4.1: AOM RF shifts of different AOMs from Fig. 4.7 and detunings δ from 1S0 → 1P1 transition
of different beams used in bosonic (fermionic) blue MOT stage. The detunings in 4th and 5th column are
given relative to the bosonic and fermionic blue MOT transition frequencies, respectively. Additionally,
the detunings for different beams in 4th and 5th column are aproximate values as detuning of each beam
can be tuned to optimize the number of atoms in the blue MOT.
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Figure 4.7: Experimental setup for blue MOT in KL FAMO. A 461 nm laser is locked to a frequency
shifted saturation spectroscopy. Three separate beams (Zeeman slower beam, 3D MOT beam, floures-
cence probe beam) used in different stages of clock operations are detuned from blue MOT transition
by three separate AOMs. Beam detunings and AOM RFs are given in Table 4.1. Abbreviations: AOM-
acousto-optic modulator, PBS- polarising beam splitter, IF- interference filter, PD- photodiode, λ

2 - half
wave plate, λ

4 - quarter wave plate.
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The idea behind our setup design was the following - we wanted to enable quick and simple swapping

between fermionic and bosonic clock operation. This meant we need to be able to swap quickly between

fermions and bosons at each stage of clock operation. For blue MOT cooling, the isotope shift between

the 1S0 → 1P1 of 88Sr and 1S0,F = 9/2 → 1P1,F = 11/2 blue MOT transitions of 87Sr is 51.8 MHz.

This means that for swapping between the isotopes we would like to shift the detunings of the different

laser beams (3D MOT beam, Zeeman beam, flourescence beam) by the same amount to ensure the same

detuning conditions (4th and 5th column in Table 4.1) when loading the bosonic and fermionic blue

MOT. This is done with the use of AOM 1 in Fig. 4.7. By changing the AOM 1 RF between -75 (for

bosons) and -95 MHz (for fermions), we change the frequency lock point of the 461 nm laser. This

way we ensure that for both isotopes, the laser is detuned by the about the same amount (-150 MHz for

bosons and -140 for fermions) from their respective blue MOT cooling transitions. This allows us to

keep the RF of AOMs 2, 3 and 4 the same for both fermionic and bosonic blue MOT. The final detunings

for each specific beam used in blue MOT (Zeeman slower, 3D MOT cooling, flourescence probe beam)

for bosonic and fermionic blue MOT are given in 4th and 5th column of Table 4.1. Note that these are

approximate values as detuning of each beam can be changed to maximize the number of atoms in the

blue MOT.

For Zeeman slower beam this means a total detuning of about δZeeman = −500 MHz from the 88Sr
1S0 → 1P1 transition. The beam has a power of 30 mW and spatial width (FWHM) of 2.2 cm achieved

by use of achromatic lenses, giving a beam intensity of about 2 mW/cm2.

For the 3D MOT we use a beam detuned by about −1Γ (40 MHz) from the cooling transition. The

total power of the beam after AOM 4 is around 60 mW with spatial width (FWHM) of 2.2 cm. After

the AOM, the blue MOT beam is merged with the red MOT cooling and stirring beams on dichroic

nonpolarising beamsplitter and split into 3 independent retro-reflected beams using half-wave plates and

polarizing beamsplitter (PBS) cubes. This gives a beam intensity of about 1.5 mW/cm2 for each pair of

retroreflected beams.

The third and final beam is the flourescence beam used as a probe for measurement of populations in the

ground and excited state of clock transition. This beam is detuned back to resonance of the 1S0 → 1P1

transition after passing through AOM 2 in Fig. 4.7.

4.5 Red MOT cooling on 1S0 → 3P1 transition

As we discussed in previous chapters, fermionic red MOT cooling is more complicated due to hyperfine

structure and requires an additional stirring laser, as well as optical pumping during detection phase. An

experimental setup with these new requirements in mind was designed and constructed in KL FAMO.

My personal contribution was the construction of the stirring and optical pumping parts of the experi-

ment. Red MOT cooling, stirring and optical pumping part of the experiment is shown in Fig. 4.9. The

detunings of different laser beams in red MOT and isotopic shifts of 87Sr, both relative to 1S0 → 3P1

63



Chapter 4. Strontium optical clock experiment in KL FAMO

transition of 88Sr are given in Fig. 4.8. The RFs of different AOMs in Fig. 4.9 and detunings of bosonic

(fermionic) red MOT beams are given in Table 4.2.
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Figure 4.8: Relevant frequencies for 88Sr and 87Sr red MOT operation. Frequencies of different laser
beams and isotope shifts of different 1S0 → 3P1 hyperfine transitions of 87Sr are all given relative to
the 1S0 → 3P1 transition of 88Sr. The solid purple (red) lines represent detunings of different bosonic
(fermionic) red MOT transition(s). The dashed purple (red) lines represent detunings of 3D MOT trap-
ping and stirring (for fermions) beams needed for bosonic (fermionic) blue MOT operation. The black
line is the detuning of the 689 nm laser.

AOM AOM RF shift (MHz) laser beam beam δ 88Sr (MHz) beam δ 87Sr (MHz)
5 2 x -111 injection to slave lasers -434 -434
6 2 x 216.57 88Sr cooling ( 87Sr stirring ) -0.86 -0.86
7 2 x 217 87Sr optical pumping / 0
8 2 x 217 87Sr optical pumping / 0
9 2 x -250 87Sr trapping / /

10 2 x -265.17 87Sr trapping N/A -0.86

Table 4.2: AOM RF shifts of different AOMs from Fig. 4.9 and detunings δ from 1S0 → 3P1 transi-
tion(s) of different beams used in bosonic (fermionic) red MOT stage. The detunings in 4th and 5th
column are given with respect to the relevant transitions used in bosonic and fermionic red MOT, respec-
tively.

Light from a 689 nm master laser is frequency-locked to a high finesse cavity, shifted by AOM by

2 x− 106 MHz (not depicted in Fig. 4.9.) from the bosonic 1S0 → 3P1 transition of 88Sr, trans-

ferred through a single-mode polarization-maintaining fiber and delivered to experiment setup shown

in Fig. 4.9.

Let us now consider what are the detunings of our 689 nm master laser compared to relevant transitions

for bosonic (fermionic) red MOT. Before passing through any AOMs shown in Fig. 4.9, the 689 nm light

is detuned by −212 MHz from 88Sr cooling transition, −433.6 MHz from 87Sr stirring transition, and

+1029.44 MHz from 87Sr cooling transition. Now, in lieu with blue MOT setup described in previous
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Figure 4.9: Experimental setup for red MOT in KL FAMO. The setup is separated into 4 sections.
First section (green dashed box) is used for injection of the 689 nm master laser beam into two slave
lasers used for 88Sr cooling / 87Sr stirring and 87Sr trapping. The remaining sections (blue, purple and
orange dashed box) are the 88Sr cooling / 87Sr stirring, 87Sr trapping and 87Sr optical pumping optical
setups, respectively. More details on each section can be found in main text. Abbreviations: FFM-flip-
flop mirror, AOM- acousto-optic modulator, PBS- polarising beam splitter, IF- interference filter, PD-
photodiode, λ

2 - half wave plate, λ
4 - quarter wave plate.

chapter, we wish to able to swap between bosonic and fermionic red MOT as quickly and painlessly as

possible. To do just that, we decided to use a single laser for either bosonic cooling or fermionic stirring

and optical pumping. This laser is labeled as 689 nm slave 1 in Fig. 4.9. To swap between the two

isotopes we simply put (remove) a flip-flop (FFM) mirror (see green box in Fig. 4.9) to use the laser for

bosonic cooling (fermionic stirring).

To have bosonic cooling, we put the flip-flop mirror in path of the beam and send the beam through

AOM 5 (green dashed box in Fig. 4.9). After the AOM, the beam is red-detuned by −434 MHz from
1S0 → 3P1 transition. The light is then injected into the 689 nm slave 1 laser.

For fermionic stirring, the flip-flop mirror is removed, skipping the double pass on AOM 5, and the beam

is directly injected into 689 nm slave 1 laser. The beam is then again detuned by −434 MHz, this time

from the 1S0,F = 9/2 → 3P1,F
′ = 9/2 stirring transition.
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From this point on, bosonic cooling and fermionic stirring beam follow the same path. By using AOM

6, we shift the laser frequency back near 1S0 → 3P1 resonance, leaving the laser red-detuned by about

0.856 MHz. This AOM is used for both the broadband (BB) and single frequency red MOT phase. In the

BB phase, AOM 6 is modulated by ωmod = 0.8 MHz where ωmod is the frequency modulation imposed

on the AOM7. This broadens the linewidth of the red MOT laser, ensuring efficient transfer of atoms

between blue and red MOT. During the single frequency (SF) phase the modulation is turned off and

the laser is detuned closer to resonance to about -1 Γ from the transition. After the double pass through

AOM 6, the light is merged with the 87Sr trapping beam and sent to the experiment.

Additionally, for fermionic clock operation, the zero order after the first pass through AOM 6 isn’t

blocked, but instead used for optical pumping. The beam is split on a beamsplitter and each of the split

beams sent through AOMs 7 and 8, respectively. This brings the beams used for optical pumping to

resonance with the fermionic stirring transition. The beams are then merged and sent to the experiment.

For fermionic trapping, we use 689 nm slave 2 laser. A part of light from fermionic stirring laser is

split and injected into the fermionic trapping laser after going through AOM 9. The output light from

slave 2 is sent through AOM 10, red-detuning the laser by 0.856 MHz from the F = 9/2 → F′ = 11/2

fermionic trapping transition. For broadband (BB) red MOT phase, AOM 10 is modulated by modulation

frequency of ωmod = 0.8 MHz. For the SF red MOT phase, the modulation is turned off.

4.6 Red-detuned 813 nm dipole trap

Once the atoms are sufficiently cooled down using the two-stage cooling, they are loaded into the optical

lattice. To produce a sufficiently deep dipole trap we use the optical setup shown of Fig. 4.10. Light

from a high-power pump laser capable of producing up to 14 W of power at 532 nm is coupled into a 4

mirror Ti:Sa ring laser. At the output of the Ti:Sa laser, about 2.5W of 813 nm light is produced. A small

fraction of Ti:Sa light is taken and coupled into a Ti:Sapphires’ internal reference cavity for monitoring

and locking of the laser frequency. This internal lock, however, is not sufficiently tight for the Ti:Sa to

be used in optical clock operation. To resolve this issue, I designed and constructed a separate locking

scheme where I locked the Ti:Sa to our RF-locked frequency comb. The method was the following -

light from the Ti:Sa is split into three separate beams. Two of the beams, with a small fraction of the

total power of the 813 nm light, are sent through a double pass (AOM 11 in Fig. 4.10) and through fiber

(FB 1) to wavelength meter (WM). The part of the beam going through the AOM is then coupled into a

separate fiber (FB 2).

At the fiber output, I built an optical beatnote setup between Ti:Sa and the frequency comb. The beatnote

setup produced a 38 MHz beatnote signal, as shown in Fig. 4.11. The beatnote is then filtered, amplified

and sent onto a mixer along side a 102 MHz signal from a signal generator. The new beatnote, now

7This means the detuning is swept by ωmod/2 on each side, from -1.256 MHz to -0.456 MHz. Here it is
important to we make sure that even with modulation we do not cross to the blue side of the transition.
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at 140 MHz, is again filtered, amplified and sent to a home-made digital phase comparator. A separate

signal generator, used as a local oscillator (LO), sends another 140 MHz signal to the phase comparator.

This leaves only the phase difference between the two inputs at the comparator output. The output is sent

to a PI controller which is then used to lock the Ti:Sa laser frequency to the frequency comb8.
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Figure 4.10: Optical setup for the 813 nm dipole trap. A Ti:Sa 813 nm laser, pumped by a 532 nm pump,
is locked to the optical frequency of the RF-locked frequency comb. Additionally the optical cavity setup
used to load atoms in the optical lattice in optical clock operation is presented. The length of the optical
cavity is locked to the Ti:Sa laser using a Pound-Drever-Hall stabilisation technique [105]. Abbrevia-
tions used in figure: FC- frequency comb, PBS- polarizing beam splitter, EOM- electro-optic modulator,
AOM- acousto-optic modulator, λ

2 - half-wave plate, λ
4 - quarter-wave plate, LPF- low pass filter, HPF-

high pass filter, AMP- operational amplifier, PD- photodiode, IF- interference filter, LO- local oscillator,
MIX-mixer, SG- signal generator, PI(D)- proportional-integral–(derivative) controller, PC- phase com-
parator, PS- phase shifter, VVA- variable voltage attenuator, FB- optical fiber, osc- oscilloscope.

4.6.1 Optical cavity Pound-Drever-Hall frequency locking

Major part of 813 nm light is sent through AOM 12 in Fig. 4.10, coupled into a polarization-maintaining

single-mode fiber and transferred to the experiment. With coupling transfer efficiency of about 80%,

there is around 350-400 mW of 813 nm light at the output of the fiber. This light goes through a single

8Prior to my arrival at KL FAMO, the Ti:Sa laser was locked using a transfer cavity. The cavity would be
locked onto the 689 nm laser and then the 813 nm Ti:Sa would be locked onto the cavity.
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pass EOM and is coupled into the power build-up cavity. The mirrors of the vertical optical lattice are

placed outside the vacuum chamber. The cavity has a finesse of around 100. To lock the power build-up

cavity to 813 nm light we use a standard Pound-Drever-Hall (PDH) technique [105, 106]. In Pound-

Drever-Hall lock, light passes through a electro-optic modulator (EOM), is reflected from the mirrors of

the lattice cavity and is detected by the photodetector (PD). The PD signal is mixed with the signal from

the signal generator. This generator is used to both drive the EOM and serve as the local oscillator for

the mixer. The mixed signal is filtered by a LPF filter and sent to the PID controller. The phase shifter

(PS) is used to match the phases of the two signal going into the mixer. The error signal from the PID

unit is sent to the piezoelectric transducer on one of the mirrors of the lattice cavity, locking the cavity

length to the frequency of the Ti:Sa laser.
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Figure 4.11: Beat of 813 nm Ti-Sa laser with the frequency comb, represented by blue points. The
beatnote is centered at 140 MHz. By fitting a Lorentzian function, represented by solid red line, to the
points, I determined the width (FWHM) of the beatnote to be equal to 420 kHz, coming mostly from the
width of the Ti-Sa laser.
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4.7 The clock transition spectroscopy

The atoms are finally loaded into the optical lattice and we are ready to perform the high-precision

spectroscopy of the clock transition and digitally lock our clock laser to the clock transition. The relevant

transitions for bosonic and fermionic clock spectroscopy are given in Fig. 4.12. Similar to the red and
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Figure 4.12: Relevant atomic clock frequencies for 88Sr and 87Sr. The frequency of the 698 clock laser
(black line) and the isotope shift of the fermionic clock transition (red line) are given relative to the
frequency of the bosonic clock transition (purple line)

blue MOT optical setups, here we also want to be able to swap between bosonic and fermionic clock

spectroscopy as simple as possible. The 698 nm master laser is frequency-locked to a high-finesse

optical cavity (neither are depicted in Fig. 4.13) and then the light from the master laser is transferred

to Sr 1 experiment via a single-mode polarization-maintaining fiber and injected into the 698 nm slave

laser shown in Fig. 4.13. The injected light is shifted by +404 MHz and +342 MHz from the bosonic and

fermionic 1S0 → 3P0 clock transition, respectively.

For fermionic spectroscopy, the 698 nm beam is sent through AOMs 14 and 15. This shifts the laser

frequency by total of 342 MHz, bringing the laser frequency in resonance with the fermionic clock

transition. For bosonic spectroscopy, we use a double-pass AOM (AOM 16) to bring the frequency of

the laser light back onto the clock transition frequency. The two clock interrogation beams are then

merged on beamsplitter (BS 2) and sent to the experiment.

4.7.1 Phase noise cancellation

As one might note from the sheer size of the few previous experimental setups, optical clocks are very

complex systems, often spanning across multiple optical tables. This brings up the question of methods

of transferring optical light across different tables. Here, optical fibers become an essential tool, offering

great flexibility in experiment design with their ability to deliver laser beams with high stability of laser

modes and stable polarization [107]. As such they have broad scientific and industrial applications, ca-
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pable of delivering light across thousands of kilometers [108, 109].

Optical fibers, however, are also very sensitive to environmental factors such as acoustic vibrations or

temperature variations. These factors perturb the optical phase of the light inserted into the fiber causing

significant spectral broadening on the order of a few hundred Hz. Generally, phase noise perturbations in

fibers usually aren’t of significant consequence when dealing with experiments with relevant linewidths

on kHz or MHz level, and can even be beneficial for sensor applications. However, they are a serious

obstacle in transfer of ultra-narrow linewidth laser light with high spectral purity such as the one required

for ultra-high precision spectroscopy in optical clocks [109].

The basic principle behind phase noise cancellation comes from the fact that the phase noise acquired
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Figure 4.13: Experimental setup for clock spectroscopy with phase noise cancellation. The setup enables
a clock spectroscopy for both fermionic and bosonic strontium. Abbreviations: PBS- polarising beam
splitter, GT pol.- Glam-Taylor polariser, LO- local oscillator, BS- beam splitter, AOM- acousto-optic
modulator, IF- interference filter, FI- Faraday isolator, PD- photodetector, λ
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during fiber transfer is independent from direction of light propagation. Therefore, light propagated

through a fiber and retroreflected back through will have simply twice the phase noise of single-transit

light. The retroreflected phase-noise affected signal can then be compared with the original input signal.

A heterodyne beatnote of these two signals will produce a signal with twice the phase noise. By pre-

modulating the phase of input light with the negative of the phase noise, one can effectively completely

remove the phase noise generated by the transfer through the fiber.

To cancel the phase noise acquired by transfer of light through optical fibers and other optical elements,

a phase noise cancellation setup is used. One such setup was constructed in Sr 1 setup in KL FAMO and

is shown in the green dashed box in Fig. 4.13. Light from a 698 nm master laser (not shown in Fig. 4.13)

is split on a polarising beamsplitter. A fraction of the light is retroreflected on a mirror serving as a local

oscillator (LO). The rest of the light is sent through an AOM (AOM 13 in Fig. 4.13) and coupled into

a polarization-maintaining single-mode optical fiber. At the output from the fiber, a small fraction of

light is split on a beam splitter (BS 1) and reflected back through the fiber. On the way back, the light

again goes through AOM 13 and is then merged with the light from the local oscillator and sent onto a

photodiode. The frequency of the beatnote generated on the photodiode is 2 x RF of AOM 13, coming

from the double pass through the AOM. In our case the frequency of the beatnote will be 160 MHz. The

beatnote will also have twice the phase noise due to the double transfer through the fiber.

At this point the beatnote is downconverted to 20 MHz using a DDS signal generator and a mixer. The

20 MHz beatnote is sent to the phase comparator where the signal is divided by 4 to produce a 5 MHz

signal. By dividing the signal, we increase the capture range of the servo controller. A separate 5 MHz

signal, serving as a local oscillator, is also sent from the DDS to the phase comparator. This leaves only

the phase noise on the output from the comparator. Output from the phase comparator is sent to the

PID controller. The PID controller receives this error signal and, using the PID parameters, generates a

correction signal which is sent to the frequency modulation input of the RF generator used to drive the

AOM. This frequency modulation compensates for any phase noise induced by the fiber, allowing the

light to be transferred through the fiber noise-free.
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Characterization of the fermionic optical
clock

As the title would imply, this section presents the preliminary results on our road to fermionic clock,

from the blue MOT all the way to atoms in the optical lattice. We expect, all things being equal, a order

of magnitude less atoms (and therefore less flourescence) in our fermionic clock compared to the bosonic

one due to the fact that the natural abundance of 87Sr is about 10 times less than 88Sr atoms. This means

that, along with ensuring sufficiently low temperature of fermions at each stage, we’ll have to take great

care to maximize the number of 87Sr atoms in our MOT and optical lattice to have sufficient signal for

clock operation. In addition, for the sake of comparison, we will present also the results of bosonic clock,

measured for similar experimental conditions.

5.1 Fermionic blue MOT

The number of atoms in an atomic ansamble as a function of the loading time in MOT is given as [92]

NSr(t) =
LSr

γSr
(1− eγSrt); (5.1)

where LSr is the loading rate of atoms into the blue MOT, γSr are the loss rates from different chan-

nels such as collisions with background gases and optical pumping to the metastable states [66] and

NSr (t = 0)=01. The blue MOT flourescence as a function of loading time in MOT for both fermionic

and bosonic blue MOT is shown in Fig. 5.1. Since blue MOT flourescence is directly proportional to the

number of atoms, the figure shows the dependence of number of atoms in MOT as function of loading

time. The comparison between bosonic and fermionic blue MOT is possible due to the unique design

1A similar equation was derived and discussed in more detail in section 3.2.1 when we’ve discussed photoion-
ization loss rates of different states in a blue-detuned magic wavelength lattice.
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Figure 5.1: Number of atoms as a function of loading time for fermionic and bosonic blue MOTs. Red
points represent number of atoms as a function of loading time in fermionic blue MOT while blue and
green points respresent number of atoms in bosonic blue MOT with and without repumpers as a function
of loading time, respectively. In the steady state the total number of atoms in the fermionic blue MOT
is an order of magnitude lower than the bosonic one due to a lower loading rate. This is expected when
we remember that there is a large difference in natural abundanuces of the two isotopes in strontium.
Additionally, we can also see that the without repumpers bosonic blue MOT will have a larger loss rate
as atoms can escape the cooling cycle via 1D2 and get stuck in the 3P2 state. To determine the loading
rate LSr and loss rate γSr, Eq. 5.1 was fitted to the measured datasets.
.

of our blue MOT setup which enables quick swapping between bosonic and fermionic blue MOT. From

Fig. 5.1, we see that the flourescence in steady state of fermionic 87Sr blue MOT is about an order of

magnitude lower than its’ bosonic counterpart as the fermionic blue MOT loading rate is about ten times

lower than the bosonic one. This is expected when we remember that the difference in natural abun-

dances of the two isotopes is also about an order of magnitude. To determine the loading and loss rate in

Fig. 5.1, Eq. 5.1 was fitted to the datasets. We see that the number of atoms in bosonic blue MOT, with

and without repumpers being turned on during loading, is about half an order of magnitude lower when
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the repumpers are turned off. The difference in number of atoms comes from a larger loss rate when

there are no repumpers during the loading stage. This lack of repumpers allows the atoms to get stuck

in the 3P2 state and escape the cooling cycle. This can provide us with baseline expectations of the ratio

of flourescences of fermions and bosons in optical lattice. Since fermionic blue MOT has 10 times less

atoms than the bosonic one, assuming similar efficiencies of transferring of fermions and bosons from

blue to red MOT and then from red MOT to the optical lattice, we would expect the number of fermions

in the lattice would also be about 10 times smaller than its bosonic counterpart.

5.2 Fermionic red MOT

Once the loading fermionic blue MOT is complete the next stage is red MOT cooling. Red MOT cooling

is done via the two stage broadband+single frequency (BB+SF) cooling scheme which employs a com-

bination of two lasers - one for trapping and another for stirring and optical pumping.

As a reminder, in the broadband red MOT stage, the linewidth of the red MOT laser(s) is broadened. In

our experiment, this is done by modulating the frequency of an AOM used in red MOT setup. This needs

to be done due to the large difference in natural linewidths of the blue and red MOT transitions. By using

the modulated red MOT phase, we match the Doppler profiles of blue and red MOTs ensuring efficient

transfer of atoms between the two MOTs. During single frequency stage, the modulation is turned off

and the only the linewidth of the laser remains. Without the BB phase, the SF phase of red MOT would

be able to capture only a small fraction of blue MOT atoms.

Before we proceed further, it would be beneficial to clear up the nomenclature used in the following

section. Generally, in the initial sections of this thesis where we described the theory behind cooling

of bosonic strontium, we would use terms like "cooling transition", "cooling beam", "cooling laser" and

so forth. This nomenclature is somewhat incomplete as the "cooling" laser is also crucial in trapping of

atoms in the MOT, but as there is a single laser performing both roles at each stage of the cooling (be it

blue MOT or red MOT), this isn’t of great importance.

The situation is quite different for fermionic red MOT. Here we have two separate lasers. One of the lasers

used drives the 1S0,F = 9/2 → 3P1,F
′ = 9/2 and the other drives the 1S0,F = 9/2 → 3P1,F

′ = 11/2

transition. Naming either of these lasers as the "cooling laser" would imply that the other one does

not participate in cooling of atoms, which is simply wrong, as both lasers fulfill that role. We will

therefore keep the nomenclature used in the initial paper by Katori [80] and refer to these two lasers

as "stirring" and "trapping" laser to highlight the different roles they perform. The one driving the
1S0,F = 9/2 → 3P1,F

′ = 9/2 transition "stirs" the atoms through different ground magnetic sublevels,

and the one driving 1S0,F = 9/2 → 3P1,F
′ = 11/2 traps the atoms in the MOT. With that out of the

way, let’s return to our red MOT.

Our goal at this stage remains the same as with blue MOT: find the experimental parameters which give

the maximum flourescence from the cloud, i.e. give the largest number of trapped atoms in the red MOT.
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To achieve just that, we mimic the approach used to load bosons into red MOT - align and overlap the
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Figure 5.2: Spectroscopy of 1S0 → 3P1 transition for different total intensities of trapping beam. The
frequency of bosonic red MOT cooling beam was scanned with AOM. Flourescence of atoms as a func-
tion of detuning from the resonance of the trapping transition (represented by blue, red and green points
for three different trapping beam intensities) was measured by CCD camera. The horizontal axis is given
as detuning of the red MOT laser frequency from the calculated resonance of the red MOT transition,
with detuning δ = 0 corresponding to the resonance of the red MOT transition. The inset shows the
flourescence for the lowest intensity of the trapping beam. The solid purple line is a Lorentzian fit to the
measured flourescence.

red MOT beams with the zero point of the magnetic gradient and compensate any stray magnetic fields

via the compensation coils. Additionally, we can use the red MOT AOMs to change the red MOT beam

power and laser frequency in other to optimize cooling of the atoms and maximise the flourescence. To

load atoms into the red MOT, we have to bring the frequencies of our trapping and stirring laser beams

to (or near) the frequencies of the trapping and stirring transition. In other words, we need to find out

which RFs to put onto the red MOT AOMs in Fig. 4.9.

For this purpose, frequency of either the trapping or stirring laser was scanned by AOM whose RF fre-
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quency and power are controlled by a Direct Digital Synthesizer (DDS) board. While the frequency

of one of the lasers was scanned, the frequency and power of the other laser was kept constant. The

frequency scans over their respective transitions were performed for different beam intensities of the

scanned laser. These scans were done during the single frequency stage, where the of frequency and RF

power of the AOM used in scanning were controlled by the DDS.

Note that this type of spectroscopy was also done for the blue MOT in previous section. However in that

case, finding the fermionic blue MOT cooling transition was straightforward. The blue MOT transition

is very wide and its isotope shift is on the same order as the width of the transition. Additionally, the

blue MOT is usually very large (around 2 cm in diameter or more) and easily seen by the naked eye. So

to load blue MOT, it was possible to simply scan AOM 1 in Fig. 4.7 and watch into the vacuum chamber

until the fermionic blue MOT appeared.

The situation is quite different for the red MOT. The natural linewidth of red MOT transition(s) is 7.6

kHz, and the isotope shifts of the relevant transitions are hundred of MHz apart. Combined with the small

size of the red MOT (usually on the order of 100 micrometers) and low sensitivity of the eye to near IR

wavelengths, loading the red MOT comes a more complicated matter. This is why we decided to perform

flourescence spectroscopies for both the stirring and trapping transition in fermionic red MOT. The scan

across the stirring (trapping) transition is done by changing the frequency of AOM 6 (10) in Fig. 4.9

and measuring the flourescence of the red MOT. When it comes to fermions, we perform a flourescence

spectroscopy where the frequency of either the stirring or trapping laser is scanned over their respec-

tive transition and the flourescence produced by atoms in the red MOT is measured on a CCD camera.

Four separate spectroscopies were performed - spectroscopy of the stirring F = 9/2 → F′ = 9/2 tran-

sition with trapping laser on/off and spectroscopy of the trapping F = 9/2 → F′ = 11/2 transition with

the stirring laser on and off. Additionally, for comparison purposes, we perform a spectroscopy of the

bosonic 1S0 → 3P1 cooling transition. For each scan we change the beam power of the scanned laser by

changing the input RF amplitude on the respective AOM. To analyze the results, we will again compare

the bosonic versus the fermionic case.

We begin our analysis with the simplest result - the spectroscopy of the bosonic 1S0 → 3P1 transition

in SF red MOT phase, shown in Fig. 5.2. This spectroscopy represents the "standard" spectroscopy

of the red MOT transition. The spectroscopy was measured for 3 different red MOT beam intensities

where intensities correspond to total red MOT beam intensity, i.e. the intensity before the beams are

split in 3 orthogonal direction for the 3D MOT cooling. For the lowest of the three measured intensities

(I = 0.427 mW/cm2) we have a single peak corresponding to the 1S0 → 3P1 transition. A Lorentzian

peak-function was fit to the spectroscopy line gives a FWHM linewidth of 106 kHz (purple line in in-

set in Fig. 5.2). The Lorentzian was chosen as the increase in linewidth compared to natural linewidth

mostly comes from powerbroadening due to low saturation intensity of 1S0 → 3P1 which is equal to

3 µW/cm2. For beam intensity of I = 0.427 mW/cm2 and natural linewidth of 7.6 kHz, the power-

broadened linewidth is equal to 91 kHz. This is fairly close to the experimentally measured linewidth of
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Figure 5.3: Spectroscopy over the F = 9/2 → F′ = 9/2 stirring transition with the trapping beam during
SF red MOT being either turned off (top figure) or turned on (bottom figure). The frequency of fermionic
red MOT trapping beam was scanned with AOM. Flourescence of atoms as a function of detuning from
the resonance of the stirring transition (represented with blue, red and greeen points for three different
total intensity of the stirring beam, respectively), was measured by CCD camera. The spectroscopy
was performed for different total beam intensities of the stirring laser beam. The horizontal x axis
represents the frequency detuning of the stirring laser from the calculated resonant frequency of the
stirring tranisition. In bottom figure, the trapping laser was left on and at resonance of the trapping
transition.

106 kHz.

Further increase of boson red MOT cooling beam intensities brings increased power broadening and the

rise of additional sidepeaks. Theory of magneto-optical trapping states that atoms are always trapped in
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the minimum (zero) of the magnetic field. However, due to imperfect symmetry of the anti-Helmholtz

coils, unbalanced intensities and polarisations of the counter-propagating cooling beams, atoms are gen-

erally slightly shifted from this minima of the magnetic field [110].

The shift of magneto-sensitive transitions of the magnetic sublevels of 1S0,mj = 0 →3 P1,mj = ±1 is

2.1 MHz/G [110]. For spectroscopy in Fig. 5.2 we used gradient field of 16 G/cm. Therefore, even a

100 µm shift of the red MOT from zero of the magnetic field would shift the mj = ±1 sublevels of 3P1

by about 600 kHz. This would account for the sidebands seen in Fig. 5.2.

For purposes of SF phase of red MOT, the red MOT cooling laser is detuned by about −1Γ (7.6 kHz).

The number of atoms, directly proporational to the flourescence in Fig. 5.2, doesn’t change signifi-

cantly near the δ ≈ 0 resonance for the 3 given intensities. Therefore, even the lowest intensity of

I = 0.427 mW/cm2 is sufficiently high for SF red MOT phase of the clock cycle.
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Figure 5.4: The flourescence of atoms (proportional to the number of atoms) in the fermionic SF red
MOT phase as a function of the duration of the SF red MOT phase was measured. The flourescence was
measured for three different loading times of BB red MOT (30, 50 and 70 ms represented by purple, green
and red points, respectively). The circles and diamonds correspond to the flourescence of atoms with and
without stirring during the SF red MOT phase. The gradient of magnetic field was ramped linearly from
4 G/cm to 12 G/cm during the BB red MOT phase. For comparison purposes, flourescence of atoms in
bosonic SF red MOT as a function of the duration of the SF red MOT phase was also measured. The
flourescence was measured for 3 different BB red MOT phase duration of 30, 50 and 70 ms (represented
by purple, green and red squares), respectively. An exponentially decaying function was fitted to all
datasets and decay times were determined.

Now that we have examined the bosonic red MOT spectroscopy, let us turn our attention to the fermionic

case. The spectroscopy of the stirring F = 9/2 → F′ = 9/2 transition for different stirring beam inten-
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sities is shown in Fig. 5.3. In Fig 5.3 (top) the trapping beam was turned off, while in Fig 5.3 (bottom)

the trapping beam was turned on and its frequency set to the F = 9/2 → F′ = 11/2 resonance. By com-

paring the fermionic spectroscopy with the bosonic one in Fig. 5.2, one may note a few key differences.

Firstly, there are no distinctly separate sidebands. For the 1S0,F = 9/2 → 3P1,F
′ = 9/2 transition,

shift of magneto-sensitive sublevels mF are in the range of 0.04 MHz/G (for mF = 1/2) to 0.39 MHz/G

(for mF = 9/2) [111]. Assuming similar shift in position of 100 µm of the red MOT from zero of mag-

netic field, the splitting of the magnetic sublevels would be at most 100 kHz (for the 0.39 MHz/G splitting

of mF = 9/2 sublevel of the excited red MOT state) for our experimental conditions. Additionally, the

spectroscopies of the stirring transition are significantly broader that their bosonic counterparts. For the

lowest intensities used (I = 1 mW/cm2 in Fig. 5.3 (top)), we get a linewidth of about 380 kHz, where

again a Lorentian fit function for the lowest beam intensity was used. This linewidth of 380 kHz is al-

most 4 times as broad compared to the bosonic 106 kHz. Of course, some of this additional broadening

can be contributed to high levels of powerbroadening as we did use about twice as much intensity per

beam compared to the bosonic case2. However, if one were to assume this broadening of the linewidth to

arrise purely from powerbroadening, beam intensity of I = 1 mW/cm2 would give a power-broadened

linewidth of 140 kHz, not the 380 kHz in our spectroscopy. A possible explanation of the additional

broadening is the shift of the magnetic hyperfine sublevels, particularly the stretched mF = 9/2. Again,

for optical clock operation, we mostly care about maximizing the number of atoms in our red MOT (and

achieving sufficiently low temperatures) to ensure efficient loading of atoms in the optical lattice.

The next step would be the flourescence spectroscopy of the trapping transition with the stirring laser

turned on/off. I have performed the spectroscopies of the trapping transition with and without the stirring

laser turned on and was able to locate the resonant frequency of the transition. However, the resonance

of the trapping transition was part of a more complex spectroscopical structure. This spectroscopical

structure was similar to those shown in [112, 113, 114, 115, 116] where the spectroscopy was reported

to be a combination of Raman-Zeeman resonances [116, 117] and recoil-induced resonances [114, 117].

As the discussion of the Raman-Zeeman and recoil-induced resonances would be beyond the scope of

this thesis, I have elected to not include the spectroscopies of the trapping transition into this thesis.

In the final step of the characterization of the red MOT, we wished to examine the decay of the floures-

cence of single frequency red MOT as function of the duration of SF red MOT, following the approach

laid out in Katori et al. [58, 63]. This decay was measured in the following way - atoms were loaded

into blue MOT and then transferred into broadband red MOT. The magnetic field gradient during BB red

MOT was ramped linearly from 4 G/cm to 12 G/cm. At that point, the magnetic field gradient is kept at

12 G/cm and the SF phase of red MOT begins. I then measured the decay in flourescence of SF red MOT

as a function of the duration of SF red MOT with t=0 in Fig. 5.4 corresponding to the starting point of SF

red MOT phase. This was done for 3 different BB MOT loading times (30, 50 and 70 ms) for fermionic

SF red MOT, both with and without the stirring laser turned on during SF phase. Stirring laser total beam

2We did this purely to ensure sufficient flourescence for the case when the trapping beam is turned off, cf. red
graph in Fig. 5.3(top).
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intensity was equal to 1.84 mW/cm2 and its frequency kept on the stirring transition resonance during

SF phase.

Finally, for comparison purposes, I also measured the decay in flourescence of bosonic red MOT in the

SF phase with the same ramp of magnetic gradient for the three BB MOT loading times of 30, 50 and 70

ms. These decays in flourescence are shown in Fig. 5.4. For each measurement of decay in flourescence

an exponential decay function of the form y = y0 +Ae−t/τ was fitted, from which decay time τ (re-

ferred to as trap lifetime in [58]) was determined. The decay times for different BB MOT loading times

are given in Table. 5.1. The flourescence decay times of SF phase of fermionic MOT when stirring is

turned on (τ ≈ 75 ms) is about five times as long compared to the decay times with stirring beam turned

off (τ ≈ 14 ms). Additionally, the flourescence decay of bosonic MOT is about twice as long as the

flourescence decay times of SF phase of fermionic MOT when stirring is turned on. These ratios match

well with those reported in [58, 63] where decay times of 600 ms, 410 ms and 77 ms for bosonic MOT

and fermionic MOT with and without stirring beam turned on, respectively, are reported. The differences

in absolute values can be attributed to different vacuum background pressures in our setup and the one

reported in [58, 63].

The following steps in getting the fermionic optical clock operational involve loading atoms in into the

optical lattice and performing the high-precision spectroscopy of the optical clock transition. As of the

writing of this thesis, that work is still in progress by the POZA group in KL FAMO.

BB red MOT 87Sr decay time τ 87Sr decay time τ 88Sr decay
loading time (ms) with stirring beam off (ms) with stirring beam on (ms) time τ (ms)

30 13.6(1) 73(1) 164(2)
50 14.2(1) 73(2) 167(1)
70 14.2(1) 74(2) 164(1)

Table 5.1: The decay times of flourescence for fermionic SF red MOT with stirring beam turned on and
off for different BB MOT loading times (30, 50 and 70 ms) are shown. Additionally, for comparison,
the decay times of bosonic SF red MOT for the same BB loading times is also given. The decay time of
fermionic MOT with stirring beam turned on is about 7 times higher than with stirring beam turned off.
Additionally, the decay time of fermionic MOT with stirring beam turned on is also about half as long as
its bosonic counterpart. These results match well with those reported in [58, 63].
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Evaluation of systematic shifts of bosonic
optical clock (Sr 1)

The quality of an specific optical clock is measured through two parameters - the optical clocks’ stability

and accuracy. As explained in the introduction of the thesis, stability of the optical clock tells us how

the measured optical clock frequency changes cycle-to-cycle and is usually represented using the Allan

statistics. The accuracy of an optical clock tells us how far our measurement of absolute frequency of

the clock transition is from the true theoretical value of the transition frequency. This frequency shift

between experimental and theoretical value comes from a variety of different physical effects such as

Zeeman effect, AC Stark effect, black-body radiation, probe light shift and others. The shift is usually

represented in the form of an accuracy budget where contributions of above mentioned effects to the

overall shift are evaluated. In the following sections we will provide accuracy budget of the bosonic 88Sr

optical clock at KL FAMO described in previous sections. This accuracy budget was measured during

our recent international clock campaign in March 2022. The accuracy budget will also be compared with

a previous campaign from 2015. The following subsections will evaluate contributions from different

effects to accuracy. We’ll examine each effect individually and evaluate its contribution to overal shift of

experimentally measured absolute frequency of 88Sr clock transition from its theoretical value.

6.1 Linear and quadratic Zeeman shift

The Zeeman shift is the result of coupling of atomic total magnetic momentum µ with an external mag-

netic field B, shifting the energy levels of the atom. The Hamiltonian of this interaction is given as

ĤZ = −µ̂ ·B, (6.1)
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where µ̂ is the operator of total angular momentum. The total angular momentum has three components:

orbital (µL = −µBglL̂
ℏ ), spin (µS = −µBgsŜ

ℏ ) and nuclear (µS = −µBgI Î
ℏ ) magnetic momentum, where µB

is the Bohr magneton and gL and gS are the orbital and spin Landé factors, respectively. The Landé fac-

tors are approximately equal to gL ≈ 1 and gS ≈ 2, respectively. Since the nuclear quantum number I for

bosons is zero, nuclear magnetic momentum for bosons doesn’t contribute the Zeeman shift. In section
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Figure 6.1: Depedence of the quadratic Zeeman shift of the clock transition as a function of magnetic
field, measured during an international campaign in March of 2022. Green points correspond to mea-
surements of the Zeeman shift of the clock transition as a function of the magnetic field. A quadratic
function, represented by solid purple line, was fitted to the measured data from which the second order
Zeeman shift was evaluated at -177.7(2.9) Hz for magnetic field of B=8 G used during the campaign.

2.9, we’ve discussed how the forbidden bosonic clock transition becomes allowed by using a strong bias

field which couples 3P0 and 3P1. We also mentioned that the use of this strong magnetic field will affect

our accuracy budget. Let us now consider how the Zeeman shift due to the strong bias field will affect

the 1S0 → 3P0 clock transition.

The first order Zeeman shift is given as ∆ν(1)Z = δgµBmFB/h where δg is the differential Landé factor

which appears due hyperfine mixing between different states. Obviously, since 88Sr doesn’t have hyper-
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fine structure, the first order zeeman shift is zero. Therefore, the first contributing order of Zeeman shift

is the 2nd order Zeeman shift which scales with the square of the magnetic field B. The quadratic Zeeman

shift comes from the fact that both clock states have the same angular momentum J=0 with significant

contribution of fine structure splitting from LS coupling. The quadratic shift is equal to

∆ν2Z = −
2α2µ2B
3∆νsh2

B2 = aB2, (6.2)

where h∆νs is the energy splitting between 3P1 and 3P0 states whose interaction is the biggest con-

tributor the quadratic Zeeman shift since they are the two fine states closest in energy. To calibrate

the quadratic Zeeman shift, we apply different values of magnetic field B, measure the shift of clock

transition and perform 2nd order polynomial fit as shown in Fig. 6.1. We find the shift to be equal to

-177.7(2.9) Hz for typical working conditions, consistent with results from a previous campaign in 2015

[118].

6.2 Lattice light shift

As we stated in a previous chapter, the light-atom interaction during the clock transition interrogation

will induce a light shift of the clock transition. There are two light shifts induced in our clock - one from

the optical lattice and another from the probe beam. We’ll discuss the light shift from the optical lattice

in this section and leave the probe beam light shift for the next section. The lattice light shift appears

due to the interaction between the atoms and the trapping laser light from the optical lattice. This shift is

given by Eq. 2.23 and depends on the difference in polarizability of the two clock states

ω = ω0 −
1

4
∆α(ωl)E

2 − 1

64
∆γ(ωl)E

4
0 . (6.3)

The lattice light shift was a significant hurdle in the early days of neutral atom optical clocks. The reason

is the following: to ensure high-precision spectroscopy of the clock transition, we have to suppress the

recoil shift from photons that are being absorbed by the atoms during clock transition interrogation.

This suppression is done by loading atoms in the optical lattice in the Lamb-Dicke regime, as explained

in previous chapters. The Lamb-Dicke regime, however, requires deep optical lattices, usually a few

hundred recoil energies. Due to high detuning of the magic wavelength for any atomic transition in

strontium, this in turn requires high intensity of light inside the dipole trap, usually dozens of W/cm2.

Due to different polarizabilities of the ground and excited clock state at a given wavelength, the lattice

AC Stark effect would heavily perturb the clock transition by shifting the clock states. The solution to

this problem was ingeniously provided by Katori in 2003 [80] who suggested using an an optical lattice

at the magic wavelength. At this wavelength, the polarizabilities of two clock states are the same and

the lattice AC Stark shift vanishes. Such a optical lattice was achieved by Katori’s group in 2005 [119].
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Figure 6.2: Dependence of the lattice light shift as a function of lattice light intensity. Violet and green
points corresponds to measurements in Sr 1 and Sr 2, respectively. A linear function, represented by solid
blue line, was fitted on the measured data sets. The lattice light shift was found to be equal to -0.34(47)
Hz. Taken from [118] from the 2015 campaign.

Experimentally, the lattice light shift is evaluated by measuring the clock transition at different lattice

depths. Evaluation of this lattice light shift is shown in Fig. 6.2. The lattice light shift was found to be

equal to -0.34(47) Hz [118].

6.3 Probe light shift

The AC Stark shift doesn’t come just from the far-detuned optical lattice, but also from the probe light

used during interrogation of the 1S0 → 3P0 transition. Here we need to remember that, while the probe

beam intensity is not very high, the probe is at 698 nm which is not a magic wavelength for strontium

and the polarizabilities of the clock states are different. This difference in polarizabilities is sufficiently

large to induce a measurable probe light shift. In terms of probe beam intensities required to interro-

gate the clock transition, fermions require low intensities, usually in the µW/cm2 as the fermion clock

transition saturation intensity is Isat = 0.4 pW/cm2 [63]. However, bosons require much higher probe
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Figure 6.3: Dependence of the probe light shift as a function of probe light intensity. Green points
correspond to measurements of the probe light shift of the clock transition as a function of the probe
beam intensity. A linear function, represented by solid purple line, was fitted on the measured data sets.
The shift was found to be equal to -6.51(75) Hz, consistent with the 2015 campaign.

light intensity of about Ip ≈ 400 mW/cm2 [120]. This high intensity again comes from the lack of

bosonic hyperfine structure. Generally, it is possible to reduce the required intensity by increasing the

bias magnetic field during interrogation. This makes it a balancing act between the probe light shift and

the quadratic Zeeman shift. Evaluation of the probe light shift performed during the 2022 campaign is

shown in Fig. 6.3. The probe light shift, represented by green points, was measured for different probe

light intensities. A linear function, represented by solid purple line, was fitted to the measured data and

the probe light shift was found to be equal to -6.51(75) Hz, again consistent with results from the 2015

campaign.
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6.4 Density shift

One of the main advantages of neutral atoms optical clocks over their ion counterparts is the ability of

interrogating many atoms simultaneously, increasing signal-to-noise ratio and improving clock stability.

On the other hand, this also allows atoms within the optical lattice to interact with each other, inducing

an interaction related shift.
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Figure 6.4: Dependence of density shift as a function of number of atoms in the optical lattice. Violet
and green points correspond to measurements of density shift in Sr 1 and Sr 2, respectively. A linear
function, represented by solid blue line, was fitted to the measured data and the shift was found to be
equal to 0.35(52) Hz. Taken from [118] from the 2015 campaign.

This shift is significantly reduced for fermions where the lowest order s-wave scattering is forbidden

due to Fermi exclusion principle and is one of the main advantages of using fermionic optical clock

over a bosonic one. Also, higher order p-scattering is allowed in fermionic optical clock, but is strongly

suppressed for sufficiently cold atomic samples due to the height of the centrifugal barrier [2]. Of course,

since we are operating a bosonic optical clock here, there is no Fermi exclusion principle and s-wave

scattering is allowed. This creates a larger density shift for the bosonic optical clock than it does for the

fermionic one. To limit the perturbations of the clock transition by the density shift, we use a large waist

of the optical lattice (of about 75 µm) and trap only few bosons per lattice site. The density shift was
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measured by changing the number of atoms in the optical lattice. The density shift as a function of the

number of atoms in the optical lattice is shown in Fig. 6.4. The density shift as a function of the number

of atoms in the lattice was measured during the 2015 campaign and found to be equal to 0.35(52) Hz

[118].

6.5 Collisional effects

Aside from collisions between different strontium atoms within the optical lattice, we also must consider

the collisions of lattice atoms with the background gas. In case of ultra-high vacuum, most such collisions

occur from interactions with hydrogen which is being released by the stainless steel chamber. The

collisions kick strontium atoms out of the optical lattice and thus prevent them from being used in the

clock frequency detection. However, this interaction will also induce a phase shift in the unscattered

atoms. This shift can be assessed by using the approach given in [121]. And, while [121] focuses on

Cs-He collisions, it can be adapted to apply to strontium as well. Along with knowing the C6 van der

Waals coeficients, which are similar for strontium and caesium, we also need to know the lifetime of

atoms in the lattice, which in our case was 1.5s (cf. Fig 2.7). In our case, we expect the collisional shift

not to be larger than 0.0(1) Hz.1

6.6 Black body radiation

The black body radiation (BBR) shift arises from the thermal radiation at temperature T of atoms’ sur-

roundings and resulting light shift. The biggest contribution to BBR at T = 300 K is at λ ≈ 10 µm as

given by Wien’s law with the largest portion of this shift coming from the electric dipole (E1) transition.

The BBR shift can be written in two components:

∆νBBR = ∆νstat

( T
T0

)4
+∆νdyn

( T
T0

)6
+O(T 8), (6.4)

where ∆νstat and ∆νdyn are the static and dynamic BBR shift, respectively.

The static shift comes from the difference in polarizabilities of the clock states and the mean ther-

mal field of the surrounding environment, while the dynamic BBR shift comes from the frequency de-

pendence of the polarizability of each clock state and is calculated by integration over the entire BBR

frequency spectrum. The dynamic BBR shift contribution to the total BBR shift is usually on the order

of a few percent for Sr [122]. The static and dynamic BBR shifts were determined experimentally to

be ∆νstat = −2.13023(6) Hz and ∆νdyn = −147.6(23) mHz [81], in good agreement with theoretical

values calculated by Safronova et al. [124]. The method of evaluating the BBR shifts consists of precise

1This assessment was made by using results in [5] and accounting for the fact that our lattice lifetime is about
an order of magnitude shorter than what was reported in there.
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Figure 6.5: The simulated temperature distribution of the vacuum systems and theirs surroundings. The
temperature of crucial points of the vacuum system was monitored during the experiment cycle by cali-
brated thermistors. The acquired data are used to calculate the temperature distribution of the system by
a finite elements stationary thermal simulation. Note that for the sake of clarity the temperature of the
strontium ovens (above 770 K) is not included in the temperature legend. Taken from [123].

measurements of temperature with temperature sensors at different points of the vacuum setup. In the

simplest approach, the temperature of the hottest and coldest parts of the vacuum setup is measured.

Usually, the hottest points of the vacuum setup are near the magnetic coils which, while cooled, still heat

their surroundings and the coolest point somewhere far from the coils. At this point we simply assume

that the effective temperature seen by the atoms is within those extremes. Additional BBR shift may

also come from the strontium oven which is usually heated to T ≈ 500 oC to ensure sufficient atom flux

for clock operation as well as the windows of the vacuum chamber which have higher emissivity than

the rest of the vacuum setup. Possible solutions to reduction of BBR shift is the use of cryogenic cham-

ber cooled to T = 95 K in which atoms are then trapped and interrogated, reducing the BBR shift to

νBBR = −22 mHz [27]. Another possible solution is the installation of a thermal radiation "shield" with

exceptional temperature uniformity, provided by highly thermally-conductive materials and platinum re-

sistance temperature sensors to provide accurate absolute temperature of the shield [125]. The simulated

temperature distribution of the vacuum systems and their surroundings in Sr 1 is shown in Fig. 6.4. The

temperature of the different points of the vacuum system was measured during the clock cycle by cali-

brated thermistors. The measured data was used to calculate the temperature distribution of the system.

The BBR shift, measured during the 2015 campaign [118], was found to be equal to -2.210(75) Hz.
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6.7 Gravitational red shift

As given by Einstein’ theory of general relativity, clocks at different gravitational potentials tick at dif-

ferent rates. This shift is called gravitational red shift and depends on the local height of the optical clock

over the Geoid:
∆ν

ν0
=
g∆h

c2
. (6.5)

So two optical clocks at different heights, connected by a phase-coherent link, will see a fractional

frequency difference between them. With their high sensitivity to gravitational changes, optical clocks

have already been used to test the theory of general relativity [126, 127, 128]. A network of optical

clocks could use be used to map the geo-potential of Earth, providing us with the "true" shape of our

planet [129, 130, 131]. In the case of our optical clock, the height of the clock compared to the geoid

is equal to 50(2) meters and the gravimetrically measured local value of the gravitational acceleration is

equal to 9.8127208(26) m/s2. This gives the gravitational red shift of 2.34(10) Hz [118].

6.8 Accuracy budget

The accuracy budget, as measured during our international 2022 campaign, is given in Table 6.1. All

shifts and their uncertainties are given in Hz. I feel obliged to point out that two effects with highest

contributions to the accuracy budget were explictly measured during the 2022 campaign - the quadratic

Zeeman and the probe light shift. The remainder of the reported effects (aside from BBR shift) are at least

one order of magnitude lower than the two highest contributing effects and therefore do not significantly

change the accuracy budget and so were taken from the previous 2015 campaign.

Effect Shift (uncertainty) (Hz)
Quadratic Zeeman -177.7(2.9)
Probe light shift -6.51(75)
Lattice light shift -0.34(47)

BBR shift -2.210(75)
Density shift 0.35(52)

Gravitational redshift 2.34(10)
DDS and electronics 0.00(16)
UTC(AOS)—UTC -0.40(43)

Total -184.4(2.1)

Table 6.1: Evaluation of systematic shifts of bosonic optical clock in Sr 1 lab for standard experimental
conditions performed during our international 2022 clock campaign. Total resulting shift of -184.4(2.1)
Hz is consistent with the results from 2015 campaign [118].
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Chapter 7

Conclusion

This thesis presents the work I’ve done during my three year stay at the Institute of Physics at the Nicolaus

Copernicus University in Toruń, Poland. During this period, my work was partially focused on the study

of feasibility of using blue magic wavelength optical lattices at 390 nm in strontium optical clocks. Most

papers available on blue magic wavelength optical lattices, starting with [77], focus on determination of

the magic wavelength and theoretical benefits of using blue magic wavelength lattices in reduction of

lattice shifts. Our work, however, focused on experimental requirements such as lattice depths needed

to ensure Lamb-Dicke regime, possible roadblocks in terms of photoionization of atoms out the lattice

during clock cycle and ways to mitigate them. We believe this work will provide valuable and in some

cases critical insight into implementation of blue magic wavelength lattices in optical clock setups.

Additionally, during my stay I worked on upgrading of the existing experimental setup with the goal of

improving the stability and accuracy of our existing setups. My primary contribution is the work I’ve

done on upgrading one the existing bosonic optical clock to enable both fermionic and bosonic optical

clock operation. I fully upgraded our experimental setup and was able to bring the fermionic clock

fully operational up to the single frequency red MOT stage, with other members continuing my work

after my departure from POZA group. It is our hope to able to run our fermionic and bosonic clocks

in a simultaneous (intermittent) manner and perform measurements of the fermionic clock transition

frequency by comparison with its bosonic counterpart. Finally, the thesis presents (in form of published

articles) the work I’ve done on examinations of interaction of rubidium atoms with a frequency comb as

part of the Quantum technologies group at the Center for Advanced Laser Techniques at the Institute of

Physics in Zagreb, Croatia. Our work focused on using frequency combs to cool down atoms in 85Rb

and 87Rb MOTs as well as the examination of frequency-comb-induced radiation pressure force in dense

atomic clouds. With this work, we aimed to present the versatility of the frequency comb, provide it an

active role in the lab and show it can be more than just an "optical ruler". We hope that our work will

broaden the applications of the frequency comb and bring it to new and exciting frontiers in the years to

come.
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Abstract: We present the measurements of the photoionization cross sections of the excited 1P1
and 3S1 states of ultracold 88Sr atoms at 389.889 nm wavelength, which is the magic wavelength
of the 1S0-3P0 clock transition. The photoionization cross section of the 1P1 state is determined
from the measured ionization rates of 88Sr in the magneto-optical trap in the 1P1 state to be
2.20(50)×10−20 m2, while the photoionization cross section of 88Sr in the 3S1 state is inferred
from the photoionization-induced reduction in the number of atoms transferred through the 3S1
state in an operating optical lattice clock to be 1.38(66)×10−18 m2. Furthermore, the resulting
limitations of employing a blue-detuned magic wavelength optical lattice in strontium optical
lattice clocks are evaluated. We estimated photoionization induced loss rates of atoms at 389.889
nm wavelength under typical experimental conditions and made several suggestions on how to
mitigate these losses. In particular, the large photoionization induced losses for the 3S1 state
would make the use of the 3S1 state in the optical cycle in a blue-detuned optical lattice unfeasible
and would instead require the less commonly used 3D1,2 states during the detection part of the
optical clock cycle.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical atomic clocks have proven to be excellent research instruments in various fields ranging
from ultra-precise metrology [1–5], tests of fundamental physics [5,6] to searches for new
matter in astrophysics [7–10]. Along with improving atomic optical clocks, the factors limiting
their performance have become increasingly important. The perturbing effects induced by the
environment, like light shifts [11], black-body radiation (BBR) shifts [12], and collisional shifts
[13], are matters of growing experimental concern. Several solutions have been implemented
to counteract these undesirable effects, like Pauli blocking mechanism [14,15], temperature
decreasing through cryogenic systems [16], and light shift cancellation by magic-wavelength-
based optical traps [17,18].

A blue-detuned optical trap has been proposed as an alternative to commonly used red-detuned
optical traps [19]. In blue-detuned optical traps, atoms are confined near the minimum of light
intensity, leading to a significant reduction of light-induced perturbations. On the other hand, if
the energy of the blue-detuned trapping light photon is above the atomic ionization threshold, it
may lead to atomic losses. Moreover, they were proposed together with the red-detuned conveyor

#460554 https://doi.org/10.1364/OE.460554
Journal © 2022 Received 6 Apr 2022; revised 30 Apr 2022; accepted 9 May 2022; published 31 May 2022
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belt optical lattice as a way to realize an active optical atomic clock based on superradiance [20].
In the present work, we analyze the feasibility of the blue-detuned magic wavelength for the
optical trapping of strontium atoms and possible atomic losses due to photoionization.

A blue-detuned magic wavelength for the 1S0-3P0 clock transition in 87Sr was experimentally
determined to be 389.889(9) nm [19]. While these blue-detuned magic wavelength photons
do not have sufficient energy to ionize the atoms directly from the strontium clock (1S0 and
3P0) states, other states that are involved during the normal operation of the strontium optical
lattice clock are potentially affected by the photoionization (see the region between the dashed
lines in Fig. 1). For instance, the first stage of cooling down the atoms before loading them
into the optical lattice is generally based on the 1S0-1P1 transition (460.9 nm in Fig. 1), and the
repumping during detection is based on the 3P0-3S1 and 3P2-3S1 transitions (679.3 nm and 707.2
nm, respectively, in Fig. 1) [21–23].

Fig. 1. Schematic energy level diagram showing relevant optical transitions used in the basic
cycle of a strontium optical lattice clock. The 460.9 nm transition is used in the first stage of
cooling and for imaging of atoms. The 689.4 nm transition is used in the next cooling stages
and the optical pumping in fermionic isotopes. The 707.2 nm and 679.3 nm transitions
are used to repump the 3P0 and 3P2 states. The 698.4 nm transition is the clock transition.
The 405 nm wavelength corresponds to the autoionization resonance (4d2+5p2)1D2. The
states belonging to the area bounded by the dashed lines are potentially affected by the
photoionization light at 389.9 nm. The 3 µm and 2.6 µm transitions can be used as an
alternative repumping scheme.

To determine photoionization cross sections for 1P1 and 3S1 levels, we used two different
experimental methods. To investigate the photoionization effect on the 1P1 state, we compared the
dynamics of loading atoms into the magneto-optical trap (MOT) with and without the ionizing
blue-detuned magic wavelength 389.889 nm light, alternately. To measure the photoionization
cross section for 3S1 state, we detect atomic losses from the optical lattice trap induced by the
presence of an ionization laser beam at blue-detuned magic wavelength during the strontium
optical lattice clock operation. The results of both measurements were used to analyze how
the photoionization by the blue-detuned magic wavelength light affects the performance of the
optical atomic clocks under typical experimental conditions. Since the magic wavelength does
not depend heavily on the particular isotope, as was shown for the red-detuned magic wavelength
of Sr at 813 nm [24], we based our research on a more abundant bosonic 88Sr isotope without
limiting the generality of our results.
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2. Experiment

2.1. Experimental setup

The photoionization experiment has been performed on the Sr optical lattice atomic clock setup
described in detail in [25] operating on 88Sr bosonic isotope. A basic cycle of this clock consists
of cooling and loading atoms into a 1D red-detuned optical lattice trap, an interrogation of the
clock transition by an ultra-stable clock laser, and detection of the resulting atomic population in
the ground (1S0) and the excited (3P0) clock states [21]. Cooling and loading of atoms into the
optical lattice trap are achieved by two consecutive MOTs, operating on the 1S0-1P1 (blue MOT)
and 1S0-3P1 (red MOT) transitions, respectively. The clock 1S0-3P0 transition is interrogated by
the π-pulse Rabi excitation. The clock cycle is concluded by the detection phase that measures
the ratio of populations in 1S0 and 3P0 states with the help of an electron shelving scheme
[26], including fluorescence imaging on 1S0-1P1 transition and optical pumping on 3P0-3S1 and
3P2-3S1 transitions.

The photoionization laser beam is synthesized via frequency doubling of a TiSa tunable laser
light inside a bow-tie enhancement cavity. The resulting laser beam is spatially filtered with
polarization-maintaining single-mode fibre and expanded by sets of lenses to either σx=7.034(85)
mm and σy=6.07(30) mm or σx=2.19(11) mm and σy=1.88(12) mm beam waist radii and directed
on atoms trapped by the blue MOT or the optical lattice trap, respectively. The diameter of the
ionization beam is much larger than the typical dimensions of atomic clouds, i.e., 2.4 mm × 2.4
mm and 157 µm × 66 µm for blue MOT and the optical lattice, respectively. The frequency of the
ionizing laser is stabilized to a wavemeter through an analogue feedback loop with an accuracy
better than 100 MHz.

2.2. Photoionization of the 1P1

To determine photo-induced losses from the 1P1 state due to blue-detuned magic 389.889 nm
light, we analyzed the fluorescence signal at 461 nm emitted by 88Sr atoms during the blue MOT
loading phase. To ensure that the 1P1 is the only possible ionized state, the repumping laser
beams for the 3P0 and 3P2 states were switched off (see Fig. 1). The photoionization cross section
σ1P1 was determined by comparing the loading rates of the MOT fluorescence with and without
the photoionizing 389.889 nm light. This technique has proven very efficient in measuring
absolute ionization cross sections of trapped atoms [27,28].

The rate equation for the number of atoms NSr loaded into the MOT can be expressed as [29]

dNSr
dt
= LSr − (γSr + γP)NSr − βSrSr

∫
dr3n2

Sr, (1)

where LSr is the MOT loading rate, γSr is the combined loss coefficient due to collisions with
background gases, optical pumping to the metastable states and other possible single atom losses,
γP is the loss coefficient due to photoionization, βSrSr is the loss coefficient due to light-assisted
collisions between Sr atoms, and nSr is the spatial density of trapped atoms. In this approach,
photoionization is considered as another mechanism of losses, linearly dependent on the number
of atoms. The approach is valid if the photoionizing beam does not modify the density distribution
of the MOT (e.g., by a dipole force), which is always fulfilled in our setup.

The experiment was performed in the low-density regime, which means that the mean free path
of the atoms is larger than the size of the trapped atomic cloud. A typical number of strontium
atoms in a blue MOT of a diameter of ∼2 mm is ∼6×108 [25]. It gives an atomic density of
∼1011 cm−3. Using the 88Sr collision cross-section of 10−13 cm2 [30], the mean free path of the
atoms trapped in the blue MOT is ∼100 cm, which is very large compared to the size of the MOT.
The low-density regime enables us to neglect the last term in Eq. (1) as the collisions between
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trapped atoms are negligible. This yields the simplified rate equation

dNSr
dt
= LSr − (γSr + γP)NSr. (2)

Integration of Eq. (2) over time gives the formula for the dependence of the number of atoms
on time during MOT loading

NSr(t) =
LSr

γSr + γP
(1 − exp (− (γSr + γP) t)) , (3)

where NSr(t = 0) = 0.
The loss coefficient γP is related to the intensity IP of the ionizing light through the expression

γP = ρ1P1σ1P1

IP

hνP
, (4)

where ρ1P1 is the fraction of atoms in 1P1 excited state, σ1P1 is the photoionization cross section,
and IP/hνP is the ionizing photon flux. The frequency νP is determined with the type B standard
uncertainty u(νP) derived from the accuracy of the wavemeter. To find the value of the γP
coefficient, two blue MOT loading curves were recorded sequentially in the presence and absence
of the photoionization laser beam (see Fig. 2). By fitting Eq. (3) independently to both curves,
we obtained loading rates γSr and γSr + γP, and determined γP by their difference. The typical
loading curves detected in the experiment are presented in Fig. 3. For these curves, the loss
coefficients are γSr=34.08(80) s−1 and γSr+γP=37.9(1.5) s−1, which corresponds to the reduction
of the 1/e MOT loading time from 29.34(69) ms to 26.4(1.0) ms. To block the scattered light
from the ionization laser, the blue MOT fluorescence was filtered by a 461 nm interference filter
and then focused on a photodiode.

Fig. 2. The timing sequence of the lasers used in the 1P1 photoionization experiment.
The time of the blue MOT’s loading phase is identical in each sequence. To record the
background from the ionization laser beam, it was kept on for a 200 ms longer compared to
MOT’s loading phase duration.

To determine the fraction of atoms in the excited state ρ1P1 , a model for two-level system was
used

ρ1P1 =
1
2

I461/Isat

I461/Isat + 4(∆/Γ)2 + 1
, (5)

where I461 is the total intensity of the blue MOT trapping laser light, Isat is the 1S0-1P1 transition
saturation intensity (427 W/m2), Γ is the natural decay rate of the excited 1P1 state (2π × 32 MHz)
and ∆ is the trapping laser detuning from resonance (typically 2Γ). The population fraction of the
atoms in 1P1 state was varied by changing the trapping laser intensity. To calibrate the trapping
laser intensity, a small portion of the trapping 461 nm laser light was uncoupled before splitting
and sent to a photodetector to monitor the intensity I461.

The detuning ∆ was continuously measured by an optical frequency comb. The related
uncertainties u(I461) and u(∆) were determined as standard deviations of their means. The
intensity of the trapping laser light and its detuning from the resonance were continuously
recorded by data acquisition software. The trapping beam is expanded to a diameter of 2 cm
and is split into three retro-reflected beams. The typical value of the total intensity of the blue
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Fig. 3. Typical fluorescence of 88Sr atoms detected while loading into the blue MOT in the
presence (left) and in the absence (right) of the photoionizing 389.889 nm light. The solid
blue and red lines depict fitted Eq. (3).

MOT trapping laser light seen by atoms, taking into account losses on viewports and optics,
is I461 = 6×30 W/m2 ≈ 0.42 Isat. The methods that calibrate population dependence on the
MOT beams intensity, described e.g., in [28,31], are not used here since they require laser light
intensities exceeding the saturation of the transition. Instead, the measured values of I461 and ∆
are directly used in Eq. (5).

2.3. Photoionization of the 3S1

To measure the photoionization cross section of 3S1 state at 389.889 nm, we employed a different
experimental approach. The experiment was performed during the standard clock cycle of the
strontium optical lattice clock described in detail elsewhere [25]. The timing sequence of the
laser beams used in the experiment is shown in Fig. 4. After sequential cooling in blue and
red MOT Sr, atoms are transferred into the 1D vertical red-detuned magic wavelength optical
lattice at 813 nm and interrogated by an ultrastable clock laser. The clock laser is locked to the
1S0-3P0 transition in the second, independent strontium optical lattice clock. The clock laser
interrogation pulse, long with respect to the transition Rabi frequency, is applied exactly on the
transition centre frequency and excites one-half of the atoms (Ne) to the 3P0 state while the rest of
the atoms (Ng) remain in the ground 1S0 state. Subsequently, after that, Sr atoms initially excited
to the 3P0 state are pumped back to the ground state through the 3S1, 3P1, and 3P2 states with
679.3 nm and 707.2 nm transitions (see Figs. 1 and 4). The number of previously excited atoms
Ne is then determined by the second imaging pulse at 461 nm. The detection is concluded by a
background image of the empty trap.

Fig. 4. The timing sequence of the lasers used in the 3S1 photoionization experiment. It
consists of two clock cycles, the first one (left) with an added photoionizing pulse, the second
one (right) providing a background.
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A pulse of the photoionizing beam added during the repumping phase of the first clock cycle
opens a new channel of losses due to photoionization from the 3S1 state. Therefore, it decreases
repumping efficiency and, consequently, reduces the number of atoms recorded by the second
imaging pulse. The photoionization cross section σ3S1 is inferred from the photoionization-
induced reduction in the number of atoms ∆Ne = Ne − NI

e, where NI
e and Ne are the excited-state

3P0 populations detected sequentially in the presence (the first cycle in Fig. 4) and absence of the
photoionization beam (the second cycle in Fig. 4), respectively.

3. Results

3.1. Photoionization cross section at blue magic wavelength

The photoionization cross section σ1P1 was determined from the loss coefficient γP and charac-
teristics of both the blue MOT and the ionizing beam. The atomic distribution in the blue MOT
detected by a CCD camera is well described by the Gaussian-like profile

N(x, y) =
2N0
πrxry

exp
(︃
−2x2

r2
x

)︃
exp

(︄
−2y2

r2
y

)︄
, (6)

where rx, ry are MOT radii (about 1.2 mm, typically). The averaged intensity of the ionizing light
⟨IP⟩ seen by atoms in the blue MOT is given by

⟨IP⟩ =

∫ ∫
I(x, y)N(x, y)

N0
dxdy, (7)

where N0 is the total number of atoms in the MOT, and I(x, y) and N(x, y) are distributions of
the intensity of the beam and the atoms, respectively. The intensity profile of the photoionizing
beam was determined by a CCD beam profiler measurement and corrected with the coefficient of
transmission through the vacuum chamber viewports. The intensity of the ionizing light was
power-locked and continuously monitored by a photodiode, and the related uncertainty u(IP) was
calculated as a standard error of the mean of the recorded photodiode readout. The photodiode
was calibrated based on the uncertainties related to the atomic distribution, namely u(rx) and
u(ry).

The photoionization cross section σ1P1 was calculated according to Eq. (4) by combining the
measured values of the excited state fraction ρ1P1 , loss coefficient γP, and the intensity ⟨IP⟩,
monitored and recorded during measurements. We recorded 12 to 20 pairs of MOT loading
curves sequentially with (the first curve) and without the photoionization beam (the second
curve) for each wavelength of the photoionization beam separately. For each pair of curves, we
determined the ionization loss rate γP as the difference (γSr + γP) − γSr, where γSr + γP and
γSr were determined by fitting the Eq. (3) to the first or the second curve, respectively. The
uncertainty u(γP) was calculated independently for each wavelength as the standard deviation of
the mean. Finally, the uncertainty of the photoionization cross section u(σ1P1 ) was calculated as
a combined standard uncertainty with several independent quantities, namely u(γP), u(IP), u(∆),
u(I461), and u(νp).

To verify our experimental method, we extended the range of photoionization wavelengths to
cover the autoionization resonance (4d2 + 5p2)1D2 near 405 nm [32–34]. This way, we enabled
comparison with previous measurements of the autoionization resonance performed with different
experimental approaches [35,36]. The measurements of σ1P1 were carried out for wavelengths in
a range from 378.4 nm to 407 nm. The results are shown in Fig. 5.

By fitting a Fano profile [37] to the measured points, we determined the position of the
resonance and its peak value to be λR=405.196(44) nm and σR=5.20(94)×10−19 m2, respectively.
To exclude another possible resonance observed on the high energy wing of the measured
photoionization spectra, the fitting range was limited to the experimental points above 392 nm.

98



Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 21429

Fig. 5. The photoionization cross section from the 1P1 state as a function of the wavelength
of the ionizing light. The solid red line is a Fano profile fitted to the measured data. The
fitting range is limited to the experimental points above 392 nm to exclude another possible
resonance below 389.9 nm.

The gap in results between 390 nm and 392 nm is due to technical problems related to the
locking of TiSa laser within the corresponding range. Our results are consistent with the results
presented previously by Mende et al. (λR=405.213(2) nm, σR = 5.6(1.1)×10−19 m2) [35] and
by Sami-ul-Haq et al. (λR= 405.177(16) nm, σR=5.45(98)×10−19 m2) [36]. Note that previous
measurements, unlike ours, did not involve cold atomic samples.

At the blue magic 389.889 nm wavelength, the photoionization cross section is equal to
2.20(50)×10−20 m2 (see Fig. 5). Our result is consistent with the value deduced from the curve
reported by Mende et al. [35] 1.46(29)×10−20 m2, within the 20% uncertainty claimed by the
author. In our case, the most significant factor contributing to the uncertainty of σ1P1 comes from
the fluctuation of the number of atoms loaded into the blue MOT. The atom number fluctuation
affects the fitting uncertainty, however, as the statistical error, it is averaged, and it does not
contribute to the final result, only to its uncertainty.

In the second set of experiments, the photoionization cross section from the 5s6s3S1 excited
state was determined by

σ3S1 =
⟨∆Ne⟩

⟨Ne⟩

hνP

⟨IP⟩tint
, (8)

where ⟨Ne⟩ and ⟨∆Ne⟩ are the averaged excited state 3P0 population and its averaged photoionization-
induced reduction during the repumping through the 3S1 state, respectively, ⟨IP⟩ is the averaged
intensity of the photoionization radiation seen by atoms in the optical lattice calculated according
to Eq. (7), and tint is the interaction time between photoionization beam and the atoms in the
3S1 state. The value of tint = 43 ns was determined on the basis of both 3S1 → 3P2 and 3S1 →
3P0 transition probabilities [38] and the natural lifetime of the 3S1 state [39,40]. Additionally,
in calculating the interaction time tint, we included repumping to the excited 3S1 state back
from 3P2 and 3P0 states. The ionization beam was power-locked with an intensity of 26270(80)
W/m2 at the Gaussian-profile peak. The e−2 diameters of the beam (2.19(11)×1.88(12) mm) are
much larger than the dimensions of the illuminated atomic cloud (157(10) µm x 66(6) µm). To
ensure the stability of the number of atoms throughout each experimental cycle, we monitored
both ground-state populations Ng and NI

g independently. The experimental points satisfying the
relation (Ng − NI

g)/Ng⟩2% were excluded resulting in 3292 points left for further analysis. To be
less prone to the oscillations of the number of atoms, we made the interleaved measurements
randomly staggered by the manual triggering of consecutive cycles.

The determination of the cross section σ3S1 based on Eq. (8) yields σ3S1 = 1.38(66)×10−18 m2.
The uncertainty of the σ3S1 was calculated as the combined standard uncertainty involving the
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uncertainties u(⟨Ne⟩), u(⟨∆Ne⟩), u(⟨IP⟩), and u(νP). The frequency type B uncertainty u(νP) is
derived from the resolution of the wavemeter. All the other terms are calculated as the standard
deviations of their means.

3.2. Study of feasibility: strontium optical clock with blue-detuned magic wavelength
optical lattice

In this section, we use our measured photoionization cross sections of 1P1 and 3S1 states to
estimate the impact of the loss of the atoms from these states due to the ionization in a blue-detuned
magic wavelength optical lattice on an optical strontium clock operation and suggest possible
mitigation measures.

As mentioned above, in a blue-detuned magic wavelength optical lattice, atoms are confined
at the minima of light intensity as opposed to a red-detuned magic wavelength optical lattice.
However, the atoms cannot be trapped in a simple 1D blue-detuned magic wavelength lattice
trap because they will escape along the radial directions. Confinement in all three orthogonal
directions can be achieved, for instance, by a 3D optical lattice trap, made up of three independent
1D optical lattices [41]. Moreover, a 3D optical lattice will reduce the influence of interactions
between atoms on the optical clock’s accuracy [42].

To reach the accuracy goal of state-of-the-art optical lattice clocks, all frequency shifts
connected with motional effects must be suppressed. When each atom is confined in a single
lattice site to a region much smaller than the wavelength of the clock probing laser, and any
tunnelling between sites is negligible, the Doppler and recoil shifts are suppressed, and the atoms
are in the Lamb-Dicke regime [43,44]. This implies different limits on minimal required potential
depth depending on the direction of the probing of the clock transition by a clock laser beam,
either horizontal or vertical. On the other hand, higher potential means higher losses due to
photoionization.

3.2.1. Horizontal direction

In a horizontal periodic potential, the states with the same vibrational quantum number in different
potential wells are degenerated in energy, amplifying tunnelling between the wells. This will
spread out the spatial wave functions of the atoms so that they are not localized to a single well
and create a band structure in their energy spectrum. This yields, depending on the initial state
of the atoms in the trap, a broadening and a shift of the atomic transition of the order of the
bandwidth of the lowest energy band of the system [45]. Figure 3 of [45] shows the corresponding
bandwidth with the bandwidth in units of the recoil energy Erec associated with the absorption or
emission of a photon of the lattice light and in Hz units calculated for 813 nm magic wavelength.

Since the recoil energy scales like k2, where k is the wavenumber of the lattice light, in the
blue-detuned lattice, for instance, the bandwidth of ∼ 1 mHz, corresponding to the 10−17 − 10−18

accuracy range, requires the potential depth above ∼ 125 Erec.

3.2.2. Vertical direction

For a vertical clock laser probe beam, the approach from the previous subsection is no longer
valid due to the presence of gravity. In the periodic potential in an accelerated frame, energies
of atoms in adjacent lattice sites are shifted, and the Hamiltonian no longer supports bound
states. This means that an atom in a vertical optical lattice will eventually tunnel to a continuum.
Fortunately, the timescale of this process increases exponentially with lattice depth [45], and this
is not an issue with the lattice depths considered here. Therefore, we must adopt the formalism
of Wannier-Stark states [46]. The external Hamiltonian of an atom with mass m in a vertical
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lattice optical trap of the depth U0z is given as

Ĥ =
ℏ2 κ̂2

2m
+

U0z

2
[1 − cos(2kẑ)] + mgẑ, (9)

where κ is the atom quasimomentum in z-direction. The eigenstates of this Hamiltonian are
called Wannier-Stark states |WM⟩, where M denotes mth well of the lattice. We have constructed
the Wannier-Stark state as the sum of Wannier states in different lattice sites (i.e., the eigenstates
of Hamiltonian in Eq. (9) without gravity) where every Wannier function is weighed by the
appropriate Bessel function [47]. Figure 6 shows the spatial representation of Wannier-Stark
states |W0⟩ centred around site M = 0 for different values of the lattice depth U0z. The states
are calculated for 390 nm blue-detuned lattice and, for comparison, for widely-used 813 nm
red-detuned lattice. In both cases, we assumed that the tunnelling between different energy bands
is negligible, i.e., the atom can only tunnel between lattice sites of the ground energy band.

Fig. 6. Wannier-Stark states in position representation for different lattice depths for 390
nm (left) and 813 nm (right) magic wavelength lattices.

As seen in Fig. 6, for an 813 nm red-detuned optical lattice, the Wannier-Stark state consists
of a main central peak and two smaller “revival” peaks in the adjacent wells, even for shallow
lattices. These revival peaks decay quickly with increasing lattice depth, with revival peaks
being hundred times smaller at lattice depths of 10 Erec

z and the wave function being practically
localized to one lattice site [45]. To achieve similar ratios of the main and side peaks for a 390
nm blue-detuned lattice, the lattice should be at least twice as deep, i.e., U0z = 20 Erec because of
the shorter distance between lattice sites and thus smaller energy shifts in the adjacent sites.

To examine the effects of coupling the Wannier-Stark states to their neighbors by the 1S0-3P0
probe beam, we consider the Wannier-Stark ladder of states with an internal two-level energy
structure

(︁
|g, WM⟩, |e, W ′

M⟩
)︁
. The Wannier-Stark ladder is a set of Wannier-Stark states with one

|WM⟩ state in each lattice site. Wannier-Stark states in the adjacent lattice sites are separated in
energy by ℏ∆g corresponding to the change in gravitational potential between sites. For Sr, this
separation between adjacent sites is equal to ∆g

2π = 417 Hz for 390 nm blue-detuned lattice. The
energy difference between the ground |g⟩ state and the excited |e⟩ state of the atom is given by
ℏωeg. The probe beam couples the |g, WM⟩ and |e, W ′

M⟩ states with different coupling strengths
Ω∆M , where ∆M = M′

−M = 0 and ∆M ≠ 0 for coupling of WS states in the same lattice site and
for coupling to neighboring lattice sites, respectively. This coupling corresponds to a translation
in momentum space eikcz [45]:

Ω∆M = Ω⟨WM |eikc ẑ |WM′ ⟩, (10)
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where kc is the wavevector of the coupling probe laser and Ω is the Rabi frequency. The relative
coupling strengths |

Ω∆M
Ω

|2 of the “carrier” Ω0 and the first 4 “sidebands” Ω±1,±2 as a function
of lattice depth are shown in Fig. 7 (left). For very shallow optical lattices with depths below
15Erec the couplings show strong oscillations similar to those in [48]. For higher lattice depths,
couplings to neighboring lattice sites rapidly decay and the atom becomes trapped in a single
lattice with strong suppression of tunnelling between sites. Additionally, Fig. 7 (left) shows that
for shallow lattice it is possible to choose different ratios of coupling parameters Ω0

Ω1,2
by tight

control of lattice depth. This control over coupling parameters allows engineering of the extent of
atomic wavefunctions through the adjustment of trap depth and thereby lowering the collisional
frequency shifts arising the on-site p-wave and neighboring-site s-wave interactions, as done for
813 nm optical lattice [49]. For lattice depth of 20Erec, coupling strengths to the nearest and
second-nearest lattice site are 10−2 and 10−4 times weaker than coupling between the ground
|g, WM⟩ and excited |g, WM⟩ WS state in the same lattice site.

�

Fig. 7. (left) Relative coupling strengths |
Ω∆M
Ω

|2 of the carrier (∆M = 0) and first 4
sidebands (∆M = ±1, ∆M = ±2) as a function of lattice depth for a blue-detuned optical
lattice. (right) Transition probability Pe of the 1S0-3P0 clock transition for effective Rabi
frequency Ω0/2π = 10 Hz and π-pulse interaction time of 50 ms when the initial state is a
pure Wannier-Stark state and U0 = 20 Erec.

To calculate the populations of the ground and excited WS states, we considered the evolution of
the different states under coupling to the probe laser by numerically solving the set of differential
equations [45]

iȧg
M =

∑︂
M′

Ω∗

M−M′

2
e−iπM′kc/kei∆M−M′ tae

M′ ,

iȧe
M =

∑︂
M′

ΩM′
−M

2
eiπMkc/ke−i∆M′

−M tag
M′ ,

(11)

where ag
M and ae

M are the probability amplitudes of the ground and excited state, respectively, and
∆M−M′ = ω − ωeg + (M − M′

)∆g. In these calculations we assume that the atom can only tunnel
to the nearest lattice site and the initial state is a pure WS state.

The computed resonances for a blue-detuned vertical optical lattice with depth of 20Erec, an
effective Rabi frequencyΩ0/2π = 10 Hz and interaction time of 50 ms are shown in Fig. 7 (right).
The central resonance corresponds to the clock transition frequency ωeg and two frequency
sidebands located at ±∆g/2π arise from weak tunnelling of atoms to neighboring sites and are
completely symmetric with respect to the central resonance.

The results presented in Fig. 7 shows that the blue-detuned vertical lattice with depth of 20Erec

has similar level of suppression of the tunelling and of the effects of the atom dynamics as the
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10Erec deep red-detuned optical lattice [45]. To hold the atoms in a 3D blue-detuned magic
lattice, it is required that the energies of the first few lattice states are smaller than the lattice
depth. The 20 Erec trap depth corresponds to around 14 µK and it is sufficiently deep to hold
atoms cooled down by using the 1S0-3P1 (red MOT) transition — typical temperatures achieved
in the last cooling stage are of the order of 1 µK.

3.2.3. Photoionization losses due to blue magic lattice

The previous subsections show that the minimal required optical trap potential depth for an
effective operation of an optical strontium clock based on the blue-detuned 390 nm magic
wavelength is on the order of 20 Erec, assuming vertical probing of the clock transition. Now we
want to estimate the losses due to the presence of the 3D blue-detuned lattice potential during a
commonly used optical strontium clock operation cycle.

To characterize the photoionization losses, we consider two parts of the clock cycle when
atoms are being cooled and trapped by the blue MOT and when the atoms are already loaded
into the optical lattice. We assume that the 3D lattice potential is present during the whole clock
cycle.

3.2.4. Atoms trapped in the blue MOT

The photoionization losses can lower the total number of the atoms loaded into the blue MOT,
which would decrease the number of atoms transferred into the 3D optical lattice trap and
consequently lower the signal-to-noise ratio of the observed clock line. In the blue MOT phase
atoms are cooled and trapped through the 1P1 state. About 0.002% of atoms escape the closed
cooling transition 1S0 ↔1P1 and must be repumped. Typically, the repumping through the 3S1
state is chosen [50]. However, as the photoionization of the 3S1 state by the blue-detuned light
at 390 nm is significant, a different repumping scheme, e.g., through the 3D state [51,52], is
preferable.

In most of the present realizations of optical lattice clock, the centres of the blue MOT and the
lattice trap overlap and the waist of the 1D optical lattice is much smaller than the atomic cloud
trapped in the blue MOT. At the same time, with some notable exceptions [53], the optical lattice
is shallow in comparison with the temperature of blue MOT atoms and they can freely pass the
optical lattice area. Therefore, any losses due to photoionization in the blue MOT due to the blue
magic 3D lattice can appear only when atoms are passing the optical lattice region.

To estimate the losses, we assume a typical blue MOT condition with maximum total intensity
of the trapping beams equal to I461 = 6×30 W/m2 and their detuning from atomic resonance
∆ = 1.25Γ, and use Eq. (5) to calculate the relative population of atoms in the 1P1 state,
ρ1P1 ≈ 0.027.

For the specific case of equal depths of all three blue detuned 1D lattices, and each of the
depths equals to 20 Erec considered in the previous subsection, the intensity (averaged over time
and space) of the 390 nm light experienced by the atoms passing the optical lattices periodic
potentials, is ∼ 2.1× 108 W/m2. The resulting loss coefficient (Eq. (4)) is equal to γP ≈ 2.4× 105

s−1.
Assuming that blue MOT lifetime is limited by the collisions with the residual background gas

molecules, the order of magnitude of the loss coefficient γSr in rate Eqs. (1–3) in real experimental
system can be approximated by the collisional loss rate due to the collisions with H2 reported in
[54], resulting in γSr ≈ 0.4 s−1 at the vacuum of 10−9 mbar. The loss rate connected with atoms’
decay to metastable 3P2 state in the case of operating blue MOT without repumpers is around 35
s−1. Therefore, Eq. (3) shows that the blue MOT will be effectively depleted in the region where
it overlaps with the 3D optical lattice trap made of three 20 Erec deep 1D optical lattices.

To overcome this loss of atoms, one can reduce the lattice intensity or even turn off the lattice
beams during the blue MOT phase. Temporary switching off lattice light is technically feasible,
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e.g., with the power build-up cavity installed inside the vacuum setup on a low expansion glass
spacer. The lattice laser can be safely switched back on and relocked during the red MOT phase,
which lasts a few tens of ms. Another possibility is to store cold atoms during the blue MOT
phase in the dark 3P2 state [55] or to use cold atomic beam loading directly the red MOT [56].

3.2.5. Atoms trapped in the 3D optical lattice

After the interrogation of the clock transition, the populations of the ground and excited states
are determined using the optical repumping through the 1P1 and 3S1 states, as discussed before.
The effective intensity of the ionizing light seen by an atom trapped in the motional ground
state of the optical lattice is determined by the modulus of its wave function ψ, approximated in
horizontal and vertical directions by Wannier and Wannier-Stark states, respectively. Due to the
short lifetimes of the atoms in the 3S1 state, the spatial distribution of the atoms is determined
by their preceding, metastable 3P0 state (the short lifetime prevents changing the shape of the
distribution in the new potential corresponding to the 3S1 state polarizability before they decay to
the lower states, which are not susceptible to photoionization). The 88Sr atoms have the same
polarizabilities in the 3P0 and 1S0 states at the optical trapping magic wavelength (at 389.889 nm
these polarizabilities are equal to 459 a.u. as calculated using the data in Ref. [57]), therefore in
our calculations, we have used numerically calculated Wannier and Wannier-Stark states for a
given potential scaled in the units of Erec.

The effective intensity from 1D lattice along ζ axis is calculated by

Ieff,ζ =

∫
|ψ(ζ)|2I(ζ)dζ , with ζ = x, y, z, (12)

where I(ζ) = I0ζ sin2(kζ ζ) is the standing wave intensity distribution and I0ζ is the maximum
intensity of each of 1D traps in ζ direction. It should be pointed out that the effective intensity
Ieff,ζ is calculated differently than the average intensity IP from Eq. (7). IP is the average intensity
of light from a single non-reflected photoionization beam with Gaussian intensity distribution,
whereas the Ieff,ζ is the effective intensity which induces photoionization of atoms in the ground
Wannier or Wannier-Stark state of the blue-detuned optical lattice periodic potential.

Figure 8 depicts the dependence of the total effective intensity in 3D lattice Ieff =
∑︁

ζ Ieff,ζ
on the total amplitude of the potential 3U0. The blue crosses depict the values numerically
calculated for Wannier-Stark (Wannier) states for the vertical (horizontal) directions in an optical
lattice. In general, for deep enough optical lattice traps the calculations can be greatly simplified
by approximating the system in Eq. (12) by a harmonic potential and its Gaussian ground states,
which yields a square-root dependence of the effective intensity on the lattice potential (red
crosses).

In the considered lattice consisting of three independent 1D lattices, each 20 Erec deep, the
Ieff ∼ 4.6 × 107 W/m2. To calculate the rate of losses for 3S1 state, we replace in Eq. (4) the
average intensity IP with the effective intensity Ieff. The resulting rate of losses of atoms in the
3S1 state due to photoionization is 1.26 × 108 s−1, which is of the order of the 3S1 state decay
rate due to the natural lifetime. Such a large loss rate significantly limits the applicability of
the blue magic lattice with a 3S1-based repumping scheme. A possible solution is to employ
an alternative repumping scheme through the 3D1,2 states (see Fig. 1). As these 3D states lie
below the photoionization threshold for blue-detuned optical lattice, they are not affected by the
photoionization induced losses from 390 nm wavelength light. However, the high IR wavelengths
of 2.6 µm for the 3P0-3D1 and 3 µm for the 3P2-3D2 transition make the use of these transitions
experimentally challenging as the lasers at these wavelengths are often not readily available.
Additionally, the longer lifetimes of τ3D1 = 2.18(1) µs for 3D1[1] and τ3D2 = 12.7 µs for 3D2 state
(the value deduced from the energy diagram in [51]) would require longer repumping times
during the detection of the clock transition.
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Fig. 8. The total effective intensity Ieff experienced by the atoms trapped in the motional
ground state of a 3D blue-detuned magic wavelength optical lattice. Ieff values were
calculated for Wannier-Stark (Wannier) states for the vertical (horizontal) directions in
the optical lattice (blue crosses) and Gaussian states (red crosses) in a harmonic potential
approximation.

3.2.6. AC Stark shift from independent 1D lattices

To prevent interference between independent 1D lattices, small frequency detunings must exist
between the light of each of the 1D lattices. While the detuning from the magic wavelength of
the 1D lattice optical clock would add a considerable light shift to the clock frequency, in the 3D
lattice the effective light shift can be still controlled at the required level. One can assume that
the 1D optical lattice in the clock laser interrogation axis can be precisely tuned to the magic
wavelength. With blue detuned optical lattice, all higher-order effects will be suppressed as atoms
are trapped close to the intensity minimum. According to our calculations, a trapping depth of 20
Erec is enough for clock operations in the vertical direction. Tunnelling in horizontal directions
do not have to be suppressed that well, and we assume individual trap depth to be 20 Erec as well.
With the vertical lattice tuned to the magic wavelength, the required minimal detuning of two
other individual lattice beams is determined by the atomic oscillation period and thus by the trap
frequency. For a trapping depth of 20 Erec, the trap frequency is around 135 kHz. With detuning
around a few times the trap frequency, we can assume that potential can trap atoms efficiently.
Both horizontal lattice beams can be detuned to opposite sides of magic wavelength, which in
case of identical intensity and almost perfectly linear light shift scaling around magic wavelength
[19] should cancel out individual light shifts. If we assume detuning of plus and minus 500 kHz
of each horizontal lattice beam and a relative intensity difference of 3%, the induced effective
light shift from detuning from both horizontal lattice beams can be controlled to the level of
around 1 × 10−19. For both horizontal lattices detuned by 1 MHz and an intensity mismatch of
5%, the induced effective light shift is still around 5 × 10−19. For this estimation, we use the
dependence of the intensity seen by atoms calculated in subsection 3.2.3.

4. Conclusion

In conclusion, we have determined the values of the 88Sr photoionization cross section at blue-
detuned magic wavelength 389.889 nm to be 2.20(50)×10−20 m2 and 1.38(66)×10−18 m2, for
the excited states 1P1 and 3S1, respectively. Additionally, we have measured the photoionization
cross section for the 1P1 state in a range from 378.4 nm to 407 nm and determined the position
and the peak value of the autoionization resonance (4d2+5p2) 1D2 to be 405.196(44) nm and
5.20(94)×10−19 m2, respectively. These results are consistent with the results previously reported
[35,36], which, unlike ours, did not involve cold atomic systems.
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To examine the potential feasibility of the blue-detuned magic wavelength strontium optical
lattice trap, we have estimated photoionization-induced atomic losses in a three-dimensional
optical lattice trap operating at the minimal intensity required to fulfil the Lamb-Dicke regime
[43,44] for the clock transition. For a 3D lattice with lattice depths of 20Erec we found the
rate of photoionization losses for 1P1 and 3S1 to be γP ≈ 2.4 × 105 s−1 and 1.26 × 108 s−1,
respectively, and we have compared these losses with other channels of atomic losses during
the standard operation of an optical lattice strontium clock. We also make several suggestions
on mitigating the photoionization losses for 1P1 and 3S1 states, thus ensuring that neither of
these loss channels is a critical defect for a blue-detuned lattice clock. In particular, the large
photoionization loss rate in the blue-detuned optical lattice makes the use of 3S1 state in the
optical clock cycle unfeasible and would instead require the use of the less commonly 3D1 state
which, while feasible, adds additional experimental difficulties due to the high IR wavelengths of
the relevant 3P0-3D1 and 3P2-3D2 transitions. Interestingly, the non-destructive measurements of
the clock transition probability(e.g., [58,59]), assuming a different way of repumping, still seem
compatible with the blue-detuned trap. The non-destructive measurements that utilize 461 nm
light assume that the excited level is not populated thanks to detuning and low power of the local
oscillator and probe beams (down to ∼30 uW at the waist of ∼75 um and detuning of ∼2 GHz
in the newest experiments, that corresponds to the relative population of atoms in the 1P1 state,
ρ1P1 ≈ 0.00025), because any atom in the excited 1P1 state in the optical lattice is lost from the
relatively shallow optical trap.

Moreover, the schemes of a continuous superradiant optical active clocks that were proposed
in [20] and related works that use a blue-detuned magic wavelength to realize the Lamb-Dicke
regime are not using either the first-stage cooling or excitation readout in the presence of the
blue-detuned optical lattice, therefore their feasibility is not affected by high photoionization cross
sections. The losses can, however, impact newer proposals, that would improve the proposed
scheme by including repumping of superradianting atoms by external incoherent pumping
[60,61].
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We investigate the frequency-comb-induced radiation pressure force acting on a cloud of cold 87Rb atoms.
Reduction and spectral broadening of the frequency comb force are observed as the cloud’s optical thickness is
increased. Since the radiation pressure force is uniquely determined by light scattered by an atomic cloud, we
discuss different scattering mechanisms and point to the shadow effect as the dominant mechanism affecting
the FC-induced force in resonantly excited dense atomic clouds. Our results improve the understanding of the
interaction of frequency comb light with many-atom ensembles, which is essential for novel frequency comb appli-
cations in simultaneous multispecies cooling and self-ordering, multimode quantum memories, and quantum
computing. © 2022 Optica Publishing Group
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1. INTRODUCTION

Investigation of light scattered from an ensemble of cold atoms
illuminated by a continuous wave (cw) laser has been a fruit-
ful platform for studying light–matter interactions [1–5].
Cooperative scattering by an ensemble of resonant systems has
been studied in detail by Dicke [6], which led to understanding
of super-radiance and collective level shifts. Since the scattered
intensity is directly mapped to the radiation pressure force,
several experiments studied the cw-induced radiation pressure
force on a cold atomic cloud in order to capture the signature of
cooperative effects [7–10]. The later studies, however, indicated
that specific effects observed in cw laser radiation pressure force
may not always be a signature of cooperativity but a result of
different scattering mechanisms such as attenuation of the
probe light, diffraction and refraction, multiple scattering, etc.
[11,12].

In contrast with the extensive studies using cw lasers, the
investigations of light scattered from an ensemble of cold
atoms illuminated by a mode-locked femtosecond laser, i.e., a
frequency comb (FC), are scarce in the literature. FCs are
unique sources of light with novel applications in laser–atom
interaction studies that extend from FC cooling [13–16] and
self-ordering [17] to multimode quantum memories [18,19]
and quantum computing [20,21]. In the time-domain, fre-
quency combs are represented by a train of phase-stabilized
ultrashort pulses; in the frequency domain, their spectrum
consists of a large number of equidistant narrow lines, i.e., comb
modes.

When the excitation of atoms is considered, a single mode
within the comb spectrum will act as a cw laser. The FC-atom
interaction will, on the other hand, generally be much more
complex, as many comb lines (modes) that are present in the
comb spectrum can simultaneously interact with the atoms
[16]. In general, when atoms are excited by a train of ultrashort
pulses from a mode-locked laser, coherent accumulation of
population and coherence will occur in the condition when
the atomic relaxation times are longer than the laser repetition
period [22–24]. The coherent effects depend on the comb
spectrum and the atomic energy levels. It is therefore not trivial
to make conclusions on the nature of the FC–atom inter-
action in specific applications, such as the determination of
FC-induced radiation pressure force on atoms. The FC-induced
force on single atoms can readily be calculated using the optical
Bloch equations and the Ehrenfest theorem [14]; however,
this approach becomes increasingly complex in dense atomic
ensembles, where the radiation pressure force starts to differ
from the single-atom force. This can be achieved even for the
optical thickness of the order of 1 for on-resonance excitation.

In this paper, we investigate the FC-induced radiation
pressure force acting on a dense cloud of cold atoms with an
on-resonance optical thickness up to 20. Reduction and spec-
tral broadening of the frequency comb force are observed as
the cloud’s optical thickness is increased. We discuss the role
of diffuse, Mie, and cooperative scattering in the measured
FC-induced force, using theoretical models developed for the
radiation pressure force induced by the cw laser excitation.
We show that the FC-induced radiation pressure force is pre-
dominately affected by the progressive attenuation of the light
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intensity within the cloud due to diffuse scattering of light. We
identify the so-called shadow effect as the dominant mechanism
affecting the FC-induced force in dense atomic clouds. Our
results provide better understanding of the frequency comb
excitation of dense clouds of multilevel atoms. The results sup-
port the considerations in [11] for the case of the cw-induced
force, thus verifying the analogy between the frequency comb
and cw laser excitation of an atomic ensemble.

2. EXPERIMENT

A simplified scheme of the experimental setup for the
preparation of a cold 87Rb cloud and its characterization
using absorption imaging as well as the setup for FC force
measurement using fluorescence imaging is shown in Fig. 1(a).

Preparation of a cloud of cold atoms. A cold 87Rb cloud
is loaded from a background vapor in a stainless-steel vac-
uum chamber with AR-coated viewports for 780 nm light,
using a standard six-beam configuration in a magneto-optical
trap (MOT). The pressure level in the chamber is around
10−8 mbar. The preparation of a cold cloud of a given optical
thickness is achieved in three consecutive stages: MOT load-
ing, temporal dark MOT, and repumping stage. In the first
stage, we load the MOT for 6 s, with the cooling laser detuned
−3.50 from the 87Rb |5S1/2; F = 2〉→ |5P3/2; F ′ = 3〉
transition, and the repumper laser in resonance with the
|5S1/2; F = 1〉→ |5P3/2; F ′ = 2〉 transition, generating a
cloud of ≈ 4 · 107 atoms at a temperature of around 50 µK
and a 1/e 2 radius of ≈ 0.8 mm. Here, 0 = 2π · 6.07 MHz
is the natural linewidth of the |5S1/2〉→ |5P3/2〉 transition
[25]. For a large number of loaded atoms, multiple scattering
of cooling/trapping light results in an effective repulsive force
between atoms, thus limiting the achievable high densities.
To further increase the density of the cloud in the experiment,
we introduce an additional, so-called dark MOT stage, as
explained in detail in [26]. In this second stage, we apply a
15 ms long temporal dark MOT, where we reduce the power
of the repumper laser to 10 µW (1% of initial power) and the
detuning of the cooling laser to−20, leaving other parameters
unchanged. As a result, the atoms are pumped into the F = 1
ground (dark) state, causing an increase of the cloud density
and, consequently, of the optical thickness. Finally, we increase
the power of the repumper laser to 1.5 mW and tune the cool-
ing laser to −70, in order to re-cool and compress the cloud
into a spherical shape while pumping all the atoms back into
the F = 2 ground state in the third repumping stage that lasts
1 ms. After preparing the cold cloud, we measure its optical
thickness, b(y , z), using the standard absorption imaging tech-
nique on the |5S1/2; F = 2〉→ |5P3/2; F ′ = 3〉 transition.
We probe the spatial intensity distribution of a weak probe
propagating in the x direction with no cloud present, I0(y , z),
and passing through a 87Rb cloud, I (y , z), and calculate the
optical thickness given by b(y , z)=− ln[I (y , z)/I0(y , z)].
For an atomic cloud of a Gaussian density distribution, b(y , z)
will also have a Gaussian shape. By fitting a 2D Gaussian to
the measured b(y , z), we extract the optical thickness at the
center of the cloud, bpeak. On-resonance optical thickness, b0,
is calculated using b0 = bpeak · (1+ 4δ2

img/0
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Fig. 1. (a) Simplified experimental scheme. Two pairs of MOT
beams are shown, while the third pair is propagating along the z axis.
The absorption imaging beam and the FC beam are co-propagated
in the x axis. The optical thickness is measured using the absorption
imaging camera, while the FC force is measured using the fluorescence
imaging camera. During the measurement of optical thickness, the
FC beam is blocked. M is a mirror; PBS is a polarizing beam splitter.
(b) Experimental sequence showing the cloud preparation, followed by
either absorption imaging or FC force measurement. (c) On-resonance
optical thickness (red circles) and cloud peak density (green triangles)
as a function of the repumper laser power during the MOT loading
stage. Solid lines represent a guide for the eye.

is the detuning of the probe laser frequency used for absorp-
tion imaging. On-resonance optical thickness is defined as
b0 = σ0

∫
∞

−∞
n(x , y = z= 0)dx , where σ0 is the on-resonance
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cross section [25], and n(x , y , z) is the spatial density of the
cloud. The experimental sequence is shown in Fig. 1(b), where
the cloud preparation stage is presented, followed by either
absorption imaging of the cloud to measure its optical thickness
or by the FC force measurement, since one of the beams has to
be blocked, as shown in Fig. 1(a).

In order to vary the optical thickness of the cloud, we change
the power of the repumper laser in the MOT loading stage,
leaving the dark MOT and the repumping stage parameters
unchanged. This change in the loading stage also affects other
cloud parameters, such as size, number of atoms, and temper-
ature. This does not affect the accuracy of optical thickness
determination since it is measured directly by absorption
imaging; nevertheless, a detailed characterization of all cloud
parameters has been made. In Fig. 1(c), the peak density,
n0 = n(x = y = z= 0), and on-resonance optical thickness,
b0, are shown as a function of the repumper laser power in the
MOT loading stage. For the given range of powers, the cloud
temperature varies from 35 µK to 75 µK, measured using a
standard time-of-flight (TOF) technique [27].

FC force measurement. The FC is generated by fre-
quency doubling an Er:fiber mode-locked femtosecond laser
(TOPTICA FFS) operating at 1560 nm with a repetition rate of
frep = 80.495 MHz. The frequency-doubled spectrum is cen-
tered around 780 nm with an FWHM of about 5 nm and a total
output power of 76 mW. The FC spectrum consists of a series of
sharp lines, i.e., comb modes [28]. The optical frequency of the
nth comb mode is given by fn = n · frep + f0, where f0 is the
offset frequency. In our experiment, we actively stabilize frep and
fn by giving feedback to the cavity length and pump power of
the mode-locked laser, thus indirectly fixing f0. The frequency
of the nth comb mode is varied by scanning f0 while keeping
frep fixed. A detailed description of the FC stabilization and
scanning scheme is presented in our recent papers [14,15].

The measurement sequence starts after the preparation of
a cloud of a given optical thickness and is similar to the one
described in our recent works [14,15]. At t = 0, we turn off the
MOT cooling beams and switch on the linearly polarized FC
beam. The total power of the FC beam on the atoms is 25 mW
and the beam size (1/e 2) is 4.5 mm, resulting in the power and
intensity per comb mode of about 75 µW and 9µW/cm2,
respectively. The MOT repumper laser is left on to continuously
pump the atoms out of the |5S1/2; F = 1〉 ground level and has
no measurable mechanical effect. The quadrupole magnetic
field is also left on. We let the comb interact with the cold cloud
for 0.5 ms. During this time, the center of mass (CM) of the
cloud accelerates in the FC beam direction (+x direction) due
to the FC force. The FC and repumper beams are then switched
off, and the cloud expands freely for a variable time, after which
we switch on the MOT cooling beams for 0.15 ms and image
the cloud’s fluorescence with a camera to determine its CM
displacement.

It is worth noting here that the approaches to change the
optical thickness of the cloud by changing the repumper laser
power immediately after the dark MOT stage used in [7], and
by changing the cloud’s expansion time before interaction as
used in [1], are not applicable in our case of the FC excitation. In
the first approach, only a fraction of atoms are transferred from
|5S1/2; F = 1〉 to |5S1/2; F = 2〉 ground level after the dark

MOT, depending on the repumper laser power. Atoms remain-
ing in the |5S1/2; F = 1〉 level and atoms in |5S1/2; F = 2〉
could be simultaneously excited by different comb modes,
which would result in a complex lineshape of the measured FC
force. In the second approach, the size of the FC beam should
be bigger than the size of the expanding cloud, which cannot be
achieved in our setup due to the low power per comb mode.

3. RESULTS AND DISCUSSION

A. FC Force as a Function of Cloud Density

Hyperfine energy levels of 87Rb and the relevant optical transi-
tions for the FC excitation are shown in Fig. 2(a). In Fig. 2(b),
we show the measured FC force, F N

FC, as a function of the FC
detuning δ, which we define as the detuning of the nth comb
mode from the |5S1/2; F = 2〉→ |5P3/2; F ′ = 3〉 transition,
for different peak cloud densities, n0. Due to the nature of the
comb spectrum, the FC radiation pressure force is periodic with
respect to the comb detuning with a period equal to frep. Two
distinct peaks appear in one frep scan, reflecting the interaction
with three comb modes, as explained in detail in our recent
work [14]. The peak at δ = 0 is due to the nth comb mode
being in resonance with the |5S1/2; F = 2〉→ |5P3/2; F ′ = 3〉
transition, whereas the peak at δ ≈−25.5 MHz is due to the
(n − 3)rd mode being in resonance with the |5S1/2; F = 2〉→
|5P3/2; F ′ = 2〉 transition and the (n − 5)th mode with the
|5S1/2; F = 2〉→ |5P3/2; F ′ = 1〉 transition. For complete-
ness, Fig. 2(c) shows the calculated FC force, F 1

FC, obtained
by summing the contributions from three hyperfine transi-
tions. The FC force is calculated for a single atom; details of the
calculation can be found in [14].

As the cloud density increases, broadening and reduction
of both FC force peaks are observed. However, these effect
are not equally pronounced for both peaks, as can be seen
from the ratio of the peaks at δ = 0 and δ ≈−25.5 MHz.
The peak ratio decreases with increasing density, as can be
seen from the inset in Fig. 2(b). For applications of mul-
tiline excitation, it is thus important to consider that, for
a sample of fixed density, as is usually prepared in most
experiments, broadening and reduction of the FC radia-
tion pressure force will vary for different transitions. The
peak ratio of 2.8 is expected when n0 approaches zero, as it
reflects the ratio of the |5S1/2; F = 2〉→ |5P3/2; F ′ = 3〉 and
|5S1/2; F = 2〉→ |5P3/2; F ′ = 2〉 transition dipole moments
[25]. This can be easily understood given the well-known result
that the force broadening and reduction due to collective effects
in many-atom ensembles depend on the optical thickness rather
than the density [29]. Since the optical thickness is defined
through the cross-section σ0 = hω0/(2Isat), where Isat is the
saturation intensity that depends on the dipole moment of the
relevant transition [25], the two peaks have different optical
thicknesses for a given density and therefore different factors
of force reduction, which directly affects the peak ratio. In the
following sections, we will therefore present and analyze the
dependence of the FC force on the optical thickness for each
force peak separately.
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Fig. 2. (a) Hyperfine energy levels of 87Rb D2 line (780 nm) and the relevant optical transitions for the FC excitation. (b) Measured FC force, F N
FC,

as a function of the FC detuning δ, for different peak densities n0. Inset shows the ratio of the FC peak forces at δ = 0 and δ ≈−25.5 MHz, where the
symbols are experimental data and the line represents a guide for the eye. Full circles correspond to averaged multiple scans, as described in the exper-
imental section. Empty circles correspond to peak ratios of the scans shown in (b), which were taken without averaging and thus have larger errors.
(c) Calculated FC force, F 1

FC, as a function of the FC detuning δ. The total FC force (violet line) is obtained by summing the force contributions from
three |5S1/2; F = 2〉→ |5P3/2; F ′ = 1, 2, 3〉 hyperfine transitions [14].

B. FC Force as a Function of Cloud Optical
Thickness

Figure 3 shows the measured FC force, F N
FC, as a function of the

FC detuning δ for different on-resonance optical thicknesses
b0. In the case of the |5S1/2; F = 2〉→ |5P3/2; F ′ = 3〉 tran-
sition, b0 is measured directly as described in Section 2 and is
divided by 2.8 to obtain b0 relevant for the |5S1/2; F = 2〉→
|5P3/2; F ′ = 2〉 transition.

The measured FC forces, arising from the |5S1/2; F = 2〉→
|5P3/2; F ′ = 3〉 transition show a Lorentzian lineshape in
the whole range of measured b0 [Fig. 3(a)]. In the case of the
|5S1/2; F = 2〉→ |5P3/2; F ′ = 2〉 transition, the FC forces
deviate from the Lorentzian lineshape [Fig. 3(b)] due to the
|5S1/2; F = 2〉→ |5P3/2; F ′ = 1〉 FC force contribution
positioned in the blue wing of the peak, as indicated in Fig. 2(b).

For a given b0, a Lorentzian function is fitted to the exper-
imental data. For the |5S1/2; F = 2〉→ |5P3/2; F ′ = 2〉
transition, we fit only to the data on the red side of the curve,
where the influence of the |5S1/2; F = 2〉→ |5P3/2; F ′ = 1〉
transition is negligible. While the FC force offset should be
zero, experimentally we see a small offset due to inaccuracies
in determination of the initial and final position of the cloud’s
CM, from which the force is determined. The value of this offset
depends on the optical thickness since the imaging signal-to-
noise depends on the cloud parameters. However, the relative
offset is around 10% of the peak force value (at δ = 0) for all
optical thicknesses in the case of F = 2→ F ′ = 3 transition
and around 15% of the peak force value (at δ =−25.5 MHz)
in the case of F = 2→ F ′ = 2 transition. The small FC force
offset is subtracted from all experimental data shown in Figs. 3
and 4.

The FC force broadening and reduction are clearly observed
for both peaks shown in Figs. 3(a) and 3(b) and are presented in
more detail in Fig. 4.

C. FC Force Broadening and Reduction

Figure 4(a) shows the measured (symbols) FC force linewidths,
0N

FC, as a function of b0. For a given b0,0N
FC is obtained from the

fit of a Lorentzian function to the measured FC force spectra as
shown in Fig. 3(a) for the |5S1/2; F = 2〉→ |5P3/2; F ′ = 3〉
transition and in Fig. 3(b) for |5S1/2; F = 2〉→ |5P3/2;

F ′ = 2〉 transitio. We observe an increase of the FC force
linewidth with increasing b0. For small b0, the increase is linear,
while the curve starts to flatten as the b0 is increased. In the limit
b0→ 0, the FC linewidth of0 = 2π · 6.07 MHz is expected, as
it reflects the natural linewidth of the 87Rb |5S1/2〉→ |5P3/2〉

transition [25]. For the largest b0 = 20.8 achieved in the
experiment, the FC force linewidth of 2.5 0 is measured.

Figure 4(b) shows the measured (symbols) reduction of
the FC force, F N

FC(δ)/F 1
FC(δ), as a function of b0. F N

FC(δ)

are obtained from the measured FC force spectra as shown
in Fig. 3(a) (for δ = 0 and δ =−0) in the case of the
|5S1/2; F = 2〉→ |5P3/2; F ′ = 3〉 transition and in Fig. 3(b)
(for δ =−25.5 MHz and δ =−25.5MHz − 0) in the case
of the |5S1/2; F = 2〉→ |5P3/2; F ′ = 2〉 transition. The
single-atom force F 1

FC(δ) is obtained by fitting Eq. (2) to the
measured data with F 1

FC(δ) as a free parameter (see the follow-
ing paragraph for details). A reduction of the FC force with
increasing b0 is observed. The force reduction is larger when
the relevant comb mode is resonant with a given atomic tran-
sition, i.e., when the nth comb mode in resonance with the
|5S1/2; F = 2〉→ |5P3/2; F ′ = 3〉 transition (δ = 0), and the
(n − 3)rd with the |5S1/2; F = 2〉→ |5P3/2; F ′ = 2〉 transi-
tion (δ =−25.5 MHz). These data also show that both atomic
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Fig. 3. Measured FC force (symbols) as a function of detuning δ
for different optical thicknesses b0. (a) FC force is due to the nth comb
mode being in resonance with the |5S1/2; F = 2〉→ |5P3/2; F ′ = 3〉
transition. (b) FC force is due to the (n − 3) rd mode being in res-
onance with the |5S1/2; F = 2〉→ |5P3/2; F ′ = 2〉 transition and
the (n − 5)th mode with the |5S1/2; F = 2〉→ |5P3/2; F ′ = 1〉
transition. For the |5S1/2; F = 2〉→ |5P3/2; F ′ = 2〉 transition, we
fit only to the data on the red side of the curve, where the influence of
the |5S1/2; F = 2〉→ |5P3/2; F ′ = 1〉 transition is negligible. A solid
line shows a Lorentzian fit to the experimental data. The arrows show
detunings that were chosen to show dependences on b0 in Fig. 4(b).

transitions follow the same dependence on the optical thickness
(both on- and off-resonance). For the largest b0 = 20.8 achieved
in the experiment, the FC force reduction of almost 90% is
measured.

In addition to the measured data, the calculated FC force
linewidths and FC force reduction are shown in Figs. 4(a) and
4(b) by solid and dashed lines. The calculations are performed
for our experimental parameters using the theoretical models
developed for the cw-induced radiation pressure force [11]. By
doing so, we considered a single-comb mode participating in the
interaction as a cw laser. This consideration is reasonable given
that the FC pulse repetition rate, frep, is much larger than the
natural linewidth of the relevant transition, 0; thus, the scatter-
ing rate of the neighboring comb modes is strongly reduced due
to the (2π frep/0)

2 dependence [13–15].
A detailed derivation of the average cw radiation pressure

force resulting from the excitation of N atoms by a resonant laser
can be found in [30] and is given by

Fig. 4. (a) Measured (symbols) and calculated FC force linewidth
in the presence of shadow (solid line) and cooperative (dashed line)
effects, using Eqs. (2) and (3), respectively, as a function of b0.
(b) Measured (symbols) and calculated FC force reduction as a
function of b0 at δ = 0 and δ =−0 in the case of |5S1/2; F =
2〉→ |5P3/2; F ′ = 3〉 transition, and δ =−25.5 MHz and
δ =−25.5 MHz−0 in the case of |5S1/2; F = 2〉→ |5P3/2; F ′ = 2〉
transition.

F =
hk00

4πN

∫ 2π

0
dφ
∫ π

0
dθ sin θ(1− cos θ)Is (θ, φ). (1)

Is (θ, φ) is the scattered far-field intensity, and θ, φ deter-
mine the direction of the scattered photons. Equation (1) shows
that the angular pattern of the scattered intensity uniquely
determines the radiation pressure force; thus, to understand the
force, it is necessary to discuss different scattering mechanisms
relevant to our experimental conditions. Light scattering by an
atomic cloud illuminated by a resonant laser can be decomposed
into several contributions [11]: (a) the background radiation
composed of diffuse scattering by all atoms, which is incoherent
in the sense that the phase of the scattered wave is random from
one to another realization of atomic positions; (b) a forward
lobe arising from diffraction of the incident beam from the
cloud, i.e., Mie scattering in the single scattering order. This
contribution is coherent in the sense that the scattered wave has
a well-defined phase. (c) The coherent backscattering cone that
arises from constructive interference during multiple scattering.

A full microscopic model built on a set of equations of N
coherently coupled dipoles (CD) can be used to calculate the
scattering intensity [1,3,29]. This quantum model captures
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incoherent and coherent contributions, including all scatter-
ing orders, and can be extended to include atomic motion.
However, due to computational complexity, the CD model is
limited to small samples and, as such, is beyond the scope of this
paper.

Another approach is to use semiclassical models to under-
stand different scattering contributions and their influence on
the radiation pressure force. To investigate these contributions,
we will follow the analysis developed in [11] for the cw-induced
force and extend it beyond the limit of b < 1.

Diffuse scattering has two contributions to the force. The first
one is called the “shadow effect” and comes as a result of pro-
gressive attenuation of light intensity through the cloud due to
diffuse scattering. It can be explained by the Beer–Lambert law,
i.e., the exponential decrease of the intensity results in broad-
ening and reduction of the overall radiation pressure force. The
force reduction arising from the shadow effect can be calculated
from [11]

Fshadow

F1
=

Ein(b)
b

, (2)

where Ein(b) is the entire function given by Ein(z)=∫ z
0 dx (1− e−x )/x , with b = b0/(1+ 4δ2/02), and F1 the

single-atom radiation pressure force. We calculate Fshadow spec-
tra as a function of b0 for our experimental parameters, from
which we extract the Fshadow(δ) and Fshadow linewidths. In order
to obtain F 1

FC(δ), we fit Eq. (2) to the measured FC force data as
a function of b0 for a given detuning δ, F N

FC(δ), with F 1
FC(δ) as a

free fitting parameter. Then, the determined F 1
FC(δ) is then used

as a scaling factor for normalization of all F N
FC(δ) forces shown

in Fig. 4(b). The calculated force linewidth and reduction as
a function of b0 resulting from the shadow effect are shown in
Figs. 4(a) and 4(b) by solid green lines. The calculated values
show good agreement with the measured data for both on- and
off-resonant excitation.

The second contribution to the force due to diffuse scat-
tering is a consequence of the first one, i.e., since the light
intensity is larger at the entrance of the cloud than at the exit,
more light is scattered in the backward than in the forward
direction. This causes an anisotropy of the emission pattern,
which slightly increases the radiation pressure force. This
anisotropy can numerically be simulated using a random walk
approach [11] and becomes significant only at large optical
thicknesses. Based on [31], we estimate that, for the largest
b0 = 20.8 achieved in the experiment, the force, including cor-
rections due to anisotropy is around 10% larger than the Fshadow,
i.e., Fdiffuse = Fshadow + Fanis ≈ 1.1Fshadow. This correction is
within the uncertainty of the experimental data.

The contribution to the force due to diffraction of the inci-
dent beam can be calculated for clouds of small optical thickness
[32] employing the Mie scattering approach [11]. As stated in
[33,34], this contribution is significant for very small atomic
clouds (k R ≈ 10) and for probe lasers tuned far-off resonance;
it is therefore negligible for condition used in our experiment,
i.e., large cloud (k R > 1000) and on-resonant excitation. Here,
k is the wavevector and R is rms (sigma) radius of a cloud of a
Gaussian density distribution.

The coherent backscattering contribution cannot be
calculated using semiclassical models but requires the full micro-
scopic CD model [11,29,35,36]. However, as predicted in [11],
its contribution is also negligible for large clouds (k R > 1000)
and on-resonant excitation such as in our experiment.

Because of its importance in the earlier experimental and
theoretical papers [7,9,11,35], we also mention an alternative
approach used to investigate the radiation pressure force. It
describes the force reduction as a consequence of coherent
collective (i.e., cooperative) scattering of atomic dipoles. This
cooperative contribution to the force can be calculated using a
mean-field approach inspired by the timed-Dicke state (TDS).
This model assumes that all atoms are driven by the unperturbed
laser beam, i.e., the atoms acquire the phase of the laser, and all
have the same excitation probabilities. It neglects reabsorption
of photons by other atoms and works in conditions of small
probe laser intensity or large detunings. The TDS approach has
become widely used in recent years, as it provides an explanation
of experimental results on superradiance [6,37], a hallmark of
cooperative effects. Cooperative radiation pressure force, FTDS

was studied in detail in [7,9] and can be calculated from

FTDS

F1
=

4δ2
+ 02

4δ2 + (1+ b0/8)
202

[
1+

b0

16(k0 R)2

]
, (3)

where R is the cloud radius, and F1 is the single atom force. We
calculate FTDS spectra as a function of b0 for our experimen-
tal parameters, from which we extract the FTDS(δ) and FTDS

linewidths. The calculated values are shown in Figs. 4(a) and
4(b) by dashed violet lines. The TDS force agrees with measured
data for small b0 and coincides with the shadow effect curve up
to b0 ≈ 3. However, at larger b0, the TDS model predicts a lin-
ear increase of the force linewidth, which is not supported by our
experimental results, as it does not include multiple scattering
effects that can induce the flattening of the force linewidth curve
at large b0 [9]. On the other hand, the good agreement of the
force reduction calculated from the shadow and TDS models
[Fig. 4(b)] even for intermediate b0 explains why, in earlier
studies [7], the reduction of the force was attributed to atomic
cooperativity. However, the results of the force broadening given
in Fig. 4(a) clearly indicate that this agreement can be mislead-
ing and point to the shadow effect as the dominant contribution
to the force in dense atomic clouds. In the conditions when the
atoms are resonantly excited by the frequency comb, the beam
attenuation due to diffuse scattering is the dominant physi-
cal mechanism defining the radiation pressure force, and the
atomic cooperativity effects are negligible. This conclusion is in
good agreement with measurements of super-radiance, where
super-radiant enhancement was observed only for mid- to large
detunings, while tuning the probe close to resonance results in
suppression of super-radiant (cooperative) behavior [37].

4. CONCLUSION

In conclusion, we have measured the frequency-comb-induced
radiation pressure force acting on a cold 87Rb cloud as a function
of the optical thickness of the cloud. We observed reduction
and broadening of the frequency comb force as the optical
thickness increases. As the scattered intensity is directly mapped
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to the radiation pressure force, we discuss different scattering
mechanisms and their contributions to the force. For our exper-
imental conditions, we show that a single scattering mechanism
dominates the radiation pressure force. It comes as a result of
progressive attenuation of light intensity in the cloud due to dif-
fuse scattering of light, i.e., the shadow effect. We also review the
cooperative timed-Dicke state approach used in earlier exper-
iments to investigate the radiation pressure force. Theoretical
models for cw radiation pressure force in the presence of shadow
and cooperative effects developed in [7,11], respectively, are
used to describe the measured frequency comb force. The
measured and the calculated force broadening and reduction
arising as results of the shadow effect are in good agreement.
The cooperative force agrees with measured data for small b0;
however. the behavior of force linewidth and force reduction at
larger b0 is not supported by the experiment. This points to the
shadow effect as the dominant contribution to the force modifi-
cation in resonantly excited atomic clouds with an on-resonance
optical thickness up to 20, i.e., a simple semiclassical model
can be used to reproduce the measured force broadening and
reduction. In order to observe the signature of the cooperative
effects in the radiation pressure force, it would be necessary to
work in the parametric regime where the beam attenuation due
to diffuse scattering is negligible, such as in large detunings from
the atomic resonance.

Our results confirm the analogy between the cw and a single-
comb-mode interaction, i.e., the influence of the off-resonance
comb modes on the comb–atom interaction is minor and can be
neglected, even in the case of increased cloud optical thickness.

The results presented in this paper contribute to the under-
standing of scattering of the frequency comb light by an
ensemble of cold atoms, thus paving the way toward novel
frequency comb applications in the field of cooling, quantum
communication, and light–atom interfaces based on structured
and disordered atomic systems.
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Simultaneous dual-species laser cooling using an optical frequency comb
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We demonstrate 1D simultaneous laser cooling of 87Rb and 85Rb atoms using an optical frequency comb.
By adjusting the pulse repetition frequency and the offset frequency, the frequency comb spectrum is tuned to
ensure that two distinct frequency comb modes are simultaneously red-detuned from the cooling transitions, one
mode for each species. Starting from a precooled cloud of 85,87Rb atoms at above-Doppler temperatures, we
show simultaneous cooling of both species down to the Doppler temperature using two counter-propagating σ+

and σ− polarized beams from the frequency comb. The results indicate that simultaneous dual-species frequency
comb cooling does not affect the cooling characteristics of individual atomic species. The results of this work
imply that several atomic species could be cooled simultaneously using a single frequency comb source. This
comb-based multichannel laser cooling could bring significant advances in multispecies atom interferometers
for space applications and in the study of multispecies interactions.

DOI: 10.1103/PhysRevA.102.021101

Optical frequency combs (FCs) are unique light sources
with applications ranging from metrology [1] and high-
resolution spectroscopy [2,3] to quantum communication and
processing [4]. In the time domain, the output of a FC is a
train of phase-stable ultrashort pulses of typically high peak
power. This allows for efficient frequency conversion and
other nonlinear interactions. The spectrum of a FC consists
of a series of equally spaced narrow spectral lines. Owing to
these unique properties, FCs have been proposed as potential
light sources for laser cooling of atoms with strong cycling
transitions in the vacuum ultraviolet (VUV) [5–7]. This part
of the spectrum, and thus some of the most prevalent atomic
species, has so far remained inaccessible to laser cooling since
generating continuous wave (cw) laser radiation in the VUV
is extremely challenging.

Cooling of atoms and ions using FCs has recently been
demonstrated. Jayich et al. [7] achieved FC Doppler cool-
ing of precooled rubidium atoms on the two-photon tran-
sition at 778 nm. Davila-Rodriguez et al. [6] showed FC
Doppler cooling of trapped magnesium ions on a single-
photon transition in the UV. Ip et al. [8] demonstrated load-
ing, cooling and crystallization of hot ytterbium ions, and
Šantić et al. [9] demonstrated cooling of rubidium atoms
on a single-photon transition at 780 nm. A recent theo-
retical work by our group [10] investigated simultaneous
FC cooling in multiple cooling channels and has shown
that simultaneous cooling of 40K, 85Rb, and 87Rb can be
achieved using a single FC by appropriate selection of comb
parameters.

In this work, we demonstrate simultaneous FC cooling
of 85Rb and 87Rb atoms. We believe that the application of
FC multichannel cooling could bring significant advances in

*aumiler@ifs.hr

multispecies atom interferometers (AIs). Simultaneous dual-
species AIs pave the way for future ground and space exper-
iments dedicated to testing the weak equivalence principle,
also known as the universality of free fall [11–13]. Current
design for space applications is based on the 85Rb and 87Rb
dual-species interferometer which employs four amplified
diode laser modules at 780 nm, offset locked to the rubidium
spectroscopy referenced frequency doubled Telecom laser, for
cooling and manipulation of atoms [14]. Multispecies AIs
offer extended dynamic measurement ranges [15] which could
increase the sensitivity and resolution of instruments. To our
knowledge, three- (and more) species AIs have so far not been
demonstrated, most likely due to the complexity of the laser
systems required. In this context, we believe that the applica-
tion of FCs with multispecies cooling capabilities could lead
to a breakthrough in the development of multispecies AIs for
space applications.

Dual- and multispecies magneto-optical traps (MOTs) are
an experimental tool for investigating atomic interactions.
They are a starting point for the production of quantum
degenerate mixtures [16–19] as well as for the formation of
heteronuclear cold molecules [20,21]. FC multichannel cool-
ing could greatly reduce the complexity of multispecies MOT
experimental systems by replacing a series of cw lasers with
a single FC source, where different comb modes can serve
as cooling and repumper lasers. One notable simplification of
the experiment involves replacing a large number of feedback
loops (one for each cw laser) with only two feedback loops
that can stabilize and phase-lock all lines within the FC spec-
trum. FC cooling would therefore allow cooling of different
atomic species by highly phase-coherent comb modes which
could bring new insights into the physics of heteronuclear cold
collisions and molecules formation [10,22].

Our apparatus consists of a dual-species MOT in which
≈ 1 × 106 85Rb atoms and ≈ 3 × 106 87Rb atoms are simul-
taneously loaded from a background vapor in a stainless steel
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chamber. The MOT relies on four independent frequency-
stabilized cw lasers arranged in a standard six-beam con-
figuration, which together with a quadrupole magnetic field
creates the trapping potential for both species. To ensure
that the MOTs are well overlapped, the cooling beams for
both species are delivered through a single optical fiber. A
detailed description of the experimental setup can be found in
Ref. [23]. In typical experimental conditions, we obtain two
clouds of cold 85Rb and 87Rb atoms with temperatures in the
range of 200–300 μK. The clouds typically have 1/e2 radii
of ≈ 0.8 mm, and their centers of mass overlap to within 5%
of their radii. Such overlapped pre-cooled clouds of 85Rb and
87Rb atoms represent the initial sample for all measurements
presented in this work.

The FC is generated by frequency doubling an Er:fiber
mode-locked laser (TOPTICA FFS) operating at 1550 nm
with a nominal repetition rate frep = 80.5 MHz. frep tuning
range of 50 kHz can be achieved by adjusting the laser cavity
length using an integrated stepper motor and a piezotrans-
ducer. The frequency-doubled spectrum used in the experi-
ment is centered around 780 nm with a FWHM of about 5 nm
and a total power of 68 mW. The FC spectrum consists of
a series of sharp lines, i.e., comb modes [24]. The optical
frequency of the nth comb mode is given by fn = n frep + f0,
where frep is the laser repetition rate and f0 is the offset
frequency.

In our experiment, we actively stabilize frep and fn by
giving feedback to the cavity length and pump power of
the mode-locked laser, thus indirectly fixing f0. The n-th
comb mode, fn, is phase-locked to a frequency-shifted cw
reference laser (ECDL, Moglabs CEL002), which is locked
to the 87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ = 3〉 transition. The
frequency shift of the cw reference laser is achieved by an
acousto-optic modulator (AOM) in a double pass configu-
ration. frep is stabilized to a low-noise synthesizer which
is referenced to a rubidium frequency standard. A detailed
description of the FC stabilization scheme is presented in our
recent paper [9].

In order to achieve simultaneous cooling of two atomic
species, two distinct modes within the comb spectrum must
be simultaneously red detuned from the cooling transitions of
the atomic species [10]. Careful tailoring of the FC spectrum
(choosing frep and f0) is therefore crucial for the successful
realization of FC cooling. In our experiment, frep is fixed
during the measurements and set to frep = 80.495 MHz, while
f0 is scanned by adjusting the heterodyne beat frequency
between the cw reference laser and the nth comb mode. This
way it is possible to control the detuning of the n-th comb
mode with respect to the 87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ =
3〉 transition. The heterodyne beat frequency can be contin-
uously changed over a range of 5–30 MHz by changing the
frequency of the local oscillator, so four separate scans with
different cw reference laser frequency shifts are performed
and subsequently merged to fully scan fn by one frep.

We start the investigation of simultaneous interaction of
the FC with cold 85Rb and 87Rb atoms by measuring the
FC radiation pressure force. The experimental setup and the
measurement sequence used are similar to the ones described
in our recent work [9]. A single circularly polarized FC beam
is sent through an AOM for fast switching, and is then directed
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FIG. 1. Measured (a) and calculated (b) FC radiation pressure
force as a function of comb detuning δ for 85Rb (red) and 87Rb
(blue) atoms. δ denotes the detuning of the nth comb mode from the
87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ = 3〉 transition. The calculated FC
force in (b) includes contributions from three 85Rb |5S1/2; F = 3〉 →
|5P3/2; F ′ = 2, 3, 4〉 and three 87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ =
1, 2, 3〉 hyperfine transitions (shown separately in Ref. [26]).

to the center of the dual-species MOT. The total power of the
FC beam on the atoms is 10 mW and the beam size (FWHM)
is 2.7 mm, resulting in the power and intensity per comb mode
of about 0.3 μW and 3.6 μW/cm2, respectively.

The measurement sequence starts with the preparation of
cold 85Rb and 87Rb clouds. At t = 0 we turn off the MOT
cooling beams, and switch on the FC beam. The MOT re-
pumper lasers are left on continuously to optically pump the
atoms out of the 85Rb |5S1/2; F = 2〉 and 87Rb |5S1/2; F = 1〉
ground states. They are arranged in a counter-propagating
configuration with the intensity predominantly in the direc-
tion perpendicular to the FC beam propagation, and have no
measurable mechanical effect (see Ref. [23] for a detailed
scheme of the optical setup). The quadrupole magnetic field
is also left on. We let the comb interact with the cold clouds
for 2 ms. During this time the centers of mass of both clouds
accelerate in the FC beam direction (+x direction) due to
the FC radiation pressure force. The FC beam and repumper
lasers are then switched off, and the clouds expand freely
for 2 ms, after which we switch on the MOT cooling beams
for 0.15 ms and image the cloud fluorescence with a camera.
Fluorescence images are recorded separately for the 85Rb and
87Rb atoms. This basic measurement sequence is repeated 6
times, and the resulting fluorescence images are then averaged
for each isotope. The cloud center of mass displacement in
the +x direction is determined from the images, providing
information on the cloud acceleration and the FC radiation
pressure force. In Fig. 1, we show the measured (a) and
calculated (b) FC force for both isotopes as a function of
the FC detuning δ, which is defined as the detuning of the
nth comb mode from the 87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ =
3〉 transition. Due to the nature of the comb spectrum, the
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FIG. 2. Relative positions of comb lines within the FC spectrum
with respect to the 85Rb |5S1/2; F = 3〉 → |5P3/2; F ′ = 2, 3, 4〉 and
87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ = 1, 2, 3〉 hyperfine transitions for
the FC parameters used in the experiment. Note that, when the n-th
comb mode is resonant with the 87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ =
3〉 transition, the (n + 14)-th comb mode is 0.4 MHz blue detuned
from (i.e., almost in resonance with) the 85Rb |5S1/2; F = 3〉 →
|5P3/2; F ′ = 4〉 transition.

FC radiation pressure force is periodic with respect to comb
detuning with period equal to frep.

The FC radiation pressure force induced on the 85,87Rb
atoms, shown in Fig. 1(b), is the total force obtained by sum-
ming the contributions from three hyperfine transitions. The
force is calculated numerically by solving the optical Bloch
equations that describe the excitation of six-level 85,87Rb
atoms by the FC [25] and subsequently using the Ehrenfest
theorem. More details on the comb force calculation are given
in Ref. [23]. The overall agreement of the measured and calcu-
lated comb force in Fig. 1 is satisfactory. The relative positions
of the peaks, as well as the ratios between them are well
reproduced for both species. The calculated force is, however,
about four times larger than the measured force, and a small
broadening of around 1 MHz is observed in the measured
peaks. This discrepancy can be attributed to several effects
that were not taken into account in the theoretical model, such
as stray magnetic fields, finite comb mode linewidth, and in
particular the spatial beam profile. These results are in line
with the measured and calculated FC force on 87Rb atoms
in our recent work [9]. The deviation of the measured and
calculated force around δ ≈ 0 will be clarified in the following
paragraphs.

In order to understand the relative positions of the comb
force peaks in Fig. 1, it is instructive to study in more detail
the hyperfine energy level structure of 85,87Rb atoms with
respect to the FC spectrum. Figure 2 schematically depicts
the positions of the comb modes with respect to the three
85Rb |5S1/2; F = 3〉 → |5P3/2; F ′ = 2, 3, 4〉 and the three
87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ = 1, 2, 3〉 hyperfine transi-
tions that are relevant for the atom-comb interaction. When
the n-th comb mode is resonant with the 87Rb |5S1/2; F =
2〉 → |5P3/2; F ′ = 3〉 transition, the (n + 14)th mode is
0.4 MHz blue detuned from the 85Rb |5S1/2; F = 3〉 →
|5P3/2; F ′ = 4〉 transition. Taking into account that the natural
linewidth of both hyperfine transitions is � = 2π× 6.07 MHz
[26,27], the above condition ensures simultaneous excitation
of the cooling transitions of both 85Rb and 87Rb atoms by the
FC. These two excitations contribute to the peak around δ ≈ 0
in Fig. 1. The peak at δ ≈ −25.5 MHz for 87Rb is due to the
(n − 3)rd mode being in resonance with the |5S1/2; F = 2〉 →
|5P3/2; F ′ = 2〉 transition, and the (n − 5)th mode in reso-
nance with the |5S1/2; F = 2〉 → |5P3/2; F ′ = 1〉 transition.

For 85Rb, the peak at δ ≈ −23.5 MHz is due to the (n + 12)-th
comb mode being in resonance with the |5S1/2; F = 3〉 →
|5P3/2; F ′ = 2〉 transition, whereas the peaks at δ ≈ −40 MHz
and δ ≈ 40 MHz are due to the (n + 13)th and (n + 12)th
modes, respectively, being in resonance with the |5S1/2; F =
3〉 → |5P3/2; F ′ = 3〉 transition.

The largest force is obtained for both isotopes for δ ≈ 0,
where simultaneous excitation of the 87Rb and 85Rb cool-
ing transitions is achieved by the nth and (n + 14)th comb
mode, respectively. As the intensities of these two modes
are approximately equal, the larger calculated force for 85Rb
reflects the larger transition dipole matrix elements for this
transition of

√
3/2 × 3.584 × 10−29 C m [27], compared to√

7/6 × 3.584 × 10−29 C m [26] for 87Rb. The actual situ-
ation is more complex, as can be seen in the experimen-
tal results, where the measured comb force for δ ≈ 0 is
equal for both species. Due to the circular polarization of
the FC beam and the presence of stray magnetic fields, the
85Rb |5S1/2; F = 3; mF = +3〉 → |5P3/2; F ′ = 4; mF = +4〉
and 87Rb |5S1/2; F = 2; mF = +2〉 → |5P3/2; F ′ = 3; mF =
+3〉 stretched transitions dominate all other Zeeman hyper-
fine transitions. As these two transitions have equal transi-
tion dipole matrix elements of

√
1/2 × 3.584 × 10−29 C m

[26,27], the resulting comb force is the same for both isotopes.
This could be accounted for in the force calculations by
including all Zeeman hyperfine transitions into the optical
Bloch equations, but this is rather cumbersome and beyond
the scope of this paper.

FC cooling in one dimension is achieved by using two
counter-propagating σ+ and σ− polarized beams. We first
prepare the pre-cooled clouds of 85Rb and 87Rb atoms in
a dual-species MOT. Then we turn off the MOT cooling
beams and turn on the FC beams. The weak cw repumper
lasers are left on, as well as the quadrupole magnetic field.
Since the clouds are in the center of the quadrupole field, the
magnetic field is B ≈ 0. The FC beams are left on for the
FC cooling time tFC, after which they are switched off, and
the clouds are left to expand freely for several ms. After a
given expansion time, we switch on the MOT cooling beams
and image the cloud fluorescence with a camera separately
for each species. A series of alternating time-of-flight (TOF)
images of 85Rb and 87Rb clouds are taken in this way at
different expansion times. We then determine the cloud widths
by fitting a Gaussian distribution to the spatial distribution
of the atoms in the clouds. The obtained cloud widths as a
function of expansion time σ (t ) give an accurate measure
of the cloud temperature by fitting the expression σ (t ) =√

σ 2
0 + kBT

m t2 [28,29], where σ0 is the cloud width at t = 0
(when the FC beams are switched off), kB is the Boltzmann
constant, m is the atomic mass, and T is the cloud temperature.
We repeat the measurement sequence 10 times and average
the results to obtain the average temperature and its statistical
uncertainty.

Temperatures obtained by FC cooling of 85Rb and 87Rb
as a function of comb detuning are shown in Fig. 3. The
total power of the FC beams on the atoms is 20 mW with
a beam size (FWHM) of 2.7 mm, resulting in the power and
intensity per comb mode of 0.6 μW and 7.2 μW/cm2, respec-
tively. tFC = 3 ms and TOF images are taken for expansion
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FIG. 3. Temperatures obtained by simultaneous FC cooling of
85Rb (red circles) and 87Rb (blue circles) as a function of the comb
detuning. δ denotes the detuning of the nth comb mode from the
87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ = 3〉 transition. The initial cloud
temperatures are Ti = 210(20) μK for 85Rb and Ti = 260(10) μK
for 87Rb, and the FC cooling time is tFC = 3 ms. For 85Rb the steady-
state temperature, which approaches the Doppler temperature, is
achieved for δ ≈ −�/2. Due to the higher Ti for 87Rb, the steady-
state is not achieved during the applied cooling time leading to
slightly higher measured temperatures. In general, equal temperature
dependence on the comb detuning is obtained for both isotopes. The
dashed line indicates the 85Rb temperature calculated for the relevant
experimental parameters using the relation (17) in Ref. [10], i.e., the
steady-state temperature obtained for the simple model of 1D FC
cooling of two-level atoms.

times between 6–11 ms. The initial cloud temperatures of
Ti = 210(20) μK for 85Rb and Ti = 260(10) μK for 87Rb
are chosen in order to make the data for the two isotopes
clearly distinguishable on the graph. For the same cloud
initial temperatures Ti, the measured FC cooling temperatures
for the two isotopes would overlap within the measurement
error. The measured temperatures approach Ti for large comb
detunings. FC cooling is observed when there is a mode
in the comb spectrum that is red detuned from a cooling
transition, i.e., when the nth comb mode is red detuned from
the 87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ = 3〉 transition, and si-
multaneously the (n + 14)th mode is red detuned from the
85Rb |5S1/2; F = 3〉 → |5P3/2; F ′ = 4〉 transition. The dashed
line in Fig. 3 indicates the steady-state 1D FC cooling temper-
ature for the case of two-level atoms, calculated using rela-
tion (17) from Ref. [10] and relevant experimental parame-
ters: 85Rb |5S1/2; F = 3〉 → |5P3/2; F ′ = 4〉 transition dipole
matrix element of

√
3/2 × 3.584 × 10−29 C m, � = 2π ×

6.07 MHz, pulse electric field amplitude E0 = 0.9 × 105

V/m, pulse duration TP = 300 fs, pulse area θ = π/78, and
frep = 80.495 MHz. The agreement between the measured
85Rb temperatures and the 1D FC cooling temperatures calcu-
lated for the simple two-level atom model is quite satisfactory.
As expected, deviations due to heating are observed when the
comb detuning approaches 0.
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FIG. 4. Temperatures obtained by simultaneous FC cooling of
85Rb (red circles) and 87Rb (blue circles) as a function of FC cooling
time tFC. The initial cloud temperatures are Ti = 231(16) μK for
85Rb and Ti = 262(8) μK for 87Rb, with comb detuning δ = −�/2.
As the FC cooling time is increased, the cloud temperature decreases
from the initial value Ti prepared in the MOT phase and approaches
the Doppler limited steady-state temperature on the time scale of
a few ms. Solid lines represent the theoretical estimate for the
dependence of the cloud temperature on the FC cooling time (see
text for details of the model).

The lowest temperature is observed for δ ≈ −�/2, and
approaches the Doppler temperature (145.57 μK [27]) for
85Rb. The lowest measured temperature for 87Rb in Fig. 3 is
slightly higher than the Doppler temperature due to the higher
initial temperature. In this case the steady state temperature
is not yet reached after tFC. This is illustrated in Fig. 4
where 85Rb and 87Rb FC cooling temperatures are shown as
a function of the FC cooling time. Ti = 231(16) μK for 85Rb
and Ti = 262(8) μK for 87Rb. Temperatures are measured for
δ = −�/2, i.e., for the nth comb mode 3 MHz red detuned
from the 87Rb |5S1/2; F = 2〉 → |5P3/2; F ′ = 3〉 transition
and the (n + 14)th mode 2.6 MHz red detuned from the
85Rb |5S1/2; F = 3〉 → |5P3/2; F ′ = 4〉 transition. The cloud
temperatures decrease from the initial value prepared in the
MOT phase and approach the Doppler limit after a few ms
of FC cooling. As expected, the steady state temperature is
reached sooner when increasing the comb mode intensity and
lowering the initial cloud temperature.

The solid lines in Fig. 4 represent the theoretical estimates
for the cloud temperatures as a function of tFC, based on a sim-
ple model in which the comb mode responsible for cooling is
considered a cw laser (of the same frequency), and the atomic
system is considered a two-level system. The model relies on
determining the time evolution of the cloud atomic velocity
distribution by solving the Fokker-Planck equation for
different interaction times, with the radiation pressure force
and the diffusion coefficient calculated using standard low-
intensity theory for two-level atoms in 1D (see for example
Ref. [30]; more details on the model can be found in Ref. [9]).
The following parameters were used: cw laser intensity of
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7.2 μW/cm2 (corresponding to the intensity per comb mode),
transition dipole matrix elements

√
3/2 × 3.584 × 10−29 C m

and
√

7/6 × 3.584 × 10−29 C m for 85Rb and 87Rb, respec-
tively, and δ = −�/2. This simple model well describes
the behavior of the measured temperatures, confirming the
analogy between FC and cw laser cooling, in line with the
results of our previous work [9]. The minimum temperature
observed in our FC cooling experiment is limited by the low
comb mode intensity (about two orders of magnitude lower
than the saturation intensity). Our previous investigations have
shown that, in order to achieve sub-Doppler temperatures,
the comb mode intensity must be increased by a factor of
40 [9]. Based on the analogy of FC and cw laser cooling,
we have estimated this sub-Doppler threshold by measuring
the temperature as a function of cw laser intensity in the
case of cw laser cooling. Aside from reaching sub-Doppler
temperatures, using high comb mode intensities should also
enable FC cooling directly from a room temperature atomic
gas [10].

In conclusion, we have demonstrated simultaneous cooling
of 85Rb and 87Rb atoms by using two comb modes from the
same FC spectrum. Simultaneous cooling of two types of
atoms does not affect the cooling of each type, which can be
seen from the comparison of FC cooling of 87Rb in the case
of dual-species cooling (this work) and single-species cooling
(Ref. [9]). In addition, we see no evidence that the action
of other comb modes within the FC spectrum deteriorates
the final FC cooling temperature. The minimum observed
temperature is limited by the comb mode intensity. We
confirm the analogy between simultaneous laser cooling of

multiple atomic species using a FC and multiple independent
cw lasers, in line with Ref. [9], thus verifying the potential
application of the FC for simultaneous multichannel cooling.
We believe that the results of this work should contribute to
the development of multispecies AIs for space applications.
This could be achieved with available fiber-based combs that
have already been used in space applications [31], and can
provide mW-level power per comb mode [32]—sufficient to
enable direct frequency comb cooling from room temperature
to sub-Doppler temperatures. Moreover, there is clear
potential in utilizing the rapidly developing chip-based
microresonator FC technology [33–35] that can currently
provide > 1 mW per comb mode at high repetition rates in
the gigahertz (GHz) range [36]. In addition, we foresee the
application of the results of our work in the experimental
investigations of multiatom interactions and creation of
multispecies cold molecules.
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Cooling of atoms using an optical 
frequency comb
N. Šantić, D. Buhin, D. Kovačić, I. Krešić, D. Aumiler & T. Ban

We report on laser cooling of neutral rubidium atoms by using a single mode of a frequency comb. 
Cooling is achieved on a dipole-allowed transition at 780 nm in a one-dimensional retro-reflected beam 
geometry. Temperatures are measured using standard time-of-flight imaging. We show the dependence 
of the temperature on the cooling time, intensity and detuning of the frequency comb. The lowest 
temperature achieved is approximately equal to the Doppler temperature and is limited by the intensity 
of the comb mode driving the cooling transition. Additionally, we verify the analogy between frequency 
comb and continuous-wave laser cooling. Our work is a step towards laser cooling of atoms with strong 
cycling transitions in the vacuum ultraviolet, such as hydrogen, deuterium and antihydrogen, where 
generation of continuous-wave laser light is limited by current laser technology. Achieving efficient 
cooling at these wavelengths would significantly improve the precision of optical frequency standards, 
enable measurements of fundamental constants with unprecedented accuracy, improve tests of charge, 
parity, and time reversal symmetry, and open the way to achieving quantum degeneracy width new 
atomic species.

Laser cooling and trapping brings atomic physics to one of the most exciting frontiers in science, with applica-
tions ranging from atom interferometry1 and optical frequency standards2 to high precision spectroscopy and 
ultracold chemistry3,4. Regardless of their great importance, laser cooling techniques are still limited to atoms 
with a simple energy level structure and closed transitions accessible by currently available continuous wave 
(CW) laser sources.

There are two main obstacles that prevent the extension of laser cooling techniques to a variety of atomic 
species and molecules. The first is associated with difficulties in creating CW laser light in the vacuum ultraviolet 
(VUV). The absence of such light sources hampers cooling of simple atoms such as hydrogen, deuterium and 
antihydrogen that exhibit single-photon transitions suitable for laser cooling in the VUV. For example, cooling of 
hydrogen and antihydrogen using the strong cycling, single photon 1s-2p transition requires Lyman-alpha radia-
tion at 121 nm, which is far below the limit imposed by the phase matching condition in nonlinear crystals5. The 
second obstacle is associated with the complex level structure of many atoms and all molecules, which permits 
decay of an excited state into a number of lower lying metastable states, widely separated in energy. Efficient cool-
ing of those species requires multiple repumping lasers which makes the system inefficient and experimentally 
very challenging6.

The aforementioned issues can be addressed using mode-locked femtosecond (fs) or picosecond (ps) lasers 
with high pulse repetition rates which produce optical frequency combs (FCs). Due to their pulsed light emission, 
FCs provide high peak powers needed for efficient frequency conversion via nonlinear crystals7 or high harmonic 
generation8,9. Simultaneously, FCs preserve long coherence times needed for efficient laser cooling since their 
spectrum consists of a series of narrow, phase coherent frequency lines. Mode-locked ps lasers have been used to 
decelerate specific velocity groups in atomic beams that were in resonance with frequency comb modes10, and to 
compress the velocity distribution of an atomic beam11. On the other hand, few ps long pulses have been used for 
broadband laser cooling of ions in the condition when the atomic relaxation time is shorter than the time period 
of the mode-locked laser12. A laser cooling scheme that uses ultrafast pulse trains to cool simple atoms in the 
VUV as well as complex atoms and molecules is proposed in the work of Kielpinski13. The author proposes driv-
ing two-photon transition with pulse trains in order to cool atoms with transitions in the VUV. To address cooling 
of complex atoms and molecules, the author proposes to modulate the original FC at several adjustable RF fre-
quencies via electro-optical modulators. Cooling of atoms on a single-photon transition using a FC has previously 
been proposed in the work of our group14. There, a theory to quantitatively describe the cooling process, based on 
the interaction of two-level atoms with two counterpropagating pulse trains, is developed and used to derive the 
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radiative force and steady-state temperature. We also showed that simultaneous laser cooling in multiple cooling 
channels can be achieved using a single frequency comb source.

Along the lines of these proposals, the first experiments that demonstrate FC cooling of atoms and ions have 
recently appeared in the literature5,15,16. Jayich et al.15 demonstrate FC Doppler cooling of pre-cooled rubidium 
atoms on the two-photon transition at 778 nm in a 1D counterpropagating geometry. The authors achieved cool-
ing through a coherent process in which multiple excitation pathways are excited by different combinations of 
comb modes. In the second experiment5, the authors demonstrate FC Doppler cooling of trapped magnesium 
ions on a single-photon transition in the UV by using a frequency tripled comb. And just recently, Ip et al.16 
demonstrated loading, cooling and crystallization of hot ytterbium ions using an optical frequency comb due to 
phonon lasing of the ion’s harmonic motion in the trap which is driven by the blue-detuned comb teeth.

In this work we demonstrate cooling of rubidium atoms on a dipole-allowed transition at 780 nm by using a 
FC. To the best of our knowledge, this is the first demonstration of FC cooling of neutral atoms on a single-photon 
transition. We prepare a cold sample of rubidium atoms that we further cool with the FC in a 1D retro-reflected 
geometry, achieving a minimum temperature close to the Doppler temperature, TD = 146 μK17. We verify the anal-
ogy between FC and CW cooling by replacing the FC with a CW laser in the same experimental geometry, whose 
intensity matches that of a single comb mode. A simple theoretical model was applied to model our experimental 
findings, in an approach where one comb line mimics a CW laser interacting with a two-level rubidium atom.

Results
Our apparatus consists of a standard magneto-optical trap (MOT) for 87Rb atoms. A cold rubidium cloud is 
loaded from background vapor in a stainless steel chamber. The MOT is realized by intersecting six CW laser 
beams, which, together with the anti-Helmholtz produced quadrupole magnetic field, create the trapping poten-
tial. Fluorescence imaging of the cloud is performed with a camera aligned along a horizontal axis. In typical 
experimental conditions we obtain a cloud 1.6 mm in diameter, which contains ≈108 atoms. By changing the 
detuning of the MOT beams we are able to prepare a cloud with temperatures in the range of 50–300 μK. Such a 
cold cloud represents the initial sample for all our measurements presented in this work.

The FC is generated by frequency doubling an Er:fiber mode-locked laser (TOPTICA FFS) operating with a 
repetition rate frep = 80.5 MHz, an output power of P ≈ 230 mW, and a ≈130 nm broad (FWHM) spectrum cen-
tered around 1560 nm. The frequency-doubled spectrum used in the experiment is centered around 780 nm with 
a FWHM of about 5 nm and a total power of 76 mW. Approximately 90000 comb lines are contained under the FC 
spectral envelope. The FC is stabilized to a CW reference laser (ECDL, Moglabs CEL002) locked to the 87Rb|5S1/2; 
F = 2〉 → |5P3/2; F′ = 3〉 transition, while the pulse train repetition frequency is locked to a stable microwave refer-
ence. A brief technical description of the FC stabilization is outlined in Methods.

FC radiation pressure force.  The efficiency of Doppler cooling depends critically on the scattering rate, 
since a scattering event changes the atomic momentum, on average, by one photon recoil. Hence, in order to 
determine the FC scattering rate we measure the FC radiation pressure force on cold Rb atoms. A single linearly 
polarized FC beam is sent through an acousto-optic modulator (AOM) for fast switching, and is then directed 
to the center of the MOT where the cold cloud of Rb atoms is prepared. A total power of 18 mW was used 
with a beam FWHM of 2.7 mm, giving a FC intensity of about 0.01 mW/cm2 per comb mode. The measurement 
sequence starts with the preparation of a cold 87Rb cloud and the FC beam off. At t = 0 we turn off the MOT 
beams, and switch on the FC beam. The weak repumper light is left on continuously to optically pump the atoms 
out of the |5S1/2; F = 1〉 ground state. It propagates perpendicular to the FC, is arranged in a counter-propagating 
configuration, and has no measurable mechanical effect. We let the FC interact with the cold cloud for 1 ms. 
During this time the cloud center of mass (CM) accelerates along the FC beam propagation axis (+x-direction) 
due to the FC radiation pressure force. At t = 1 ms the FC beam and repumper are switched off, and the cloud 
expands freely for 5 ms. At t = 6 ms the MOT beams are turned on and the cloud fluorescence is imaged with 
a camera to determine the cloud’s centre of mass displacement in the x direction, ΔxCM. We then use ΔxCM to 
calculate the acceleration of the cloud, which, using the Rb atom mass, finally gives the FC force. This measure-
ment is performed for different relative detunings of the comb lines with respect to the hyperfine transitions, the 
average of 4 consecutive measurements is shown in Fig. 1(b).

As the FC spectrum consists of identical, regularly spaced comb lines, we characterize the FC spectrum by 
the detuning δ of the n-th comb mode from the |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 transition. Accordingly, the meas-
ured FC force dependence on comb detuning, FFC(δ), shown in Fig. 1(b,c) repeats every frep = 80.5 MHz. Two 
distinct peaks appear in one frep scan reflecting the interaction with three comb modes, as shown schematically 
in Fig. 1(a). The peak at δ = 0 is due to the n-th comb mode being in resonance with the |5S1/2; F = 2〉 → |5P3/2; 
F′ = 3〉 transition, whereas the peak at δ ≈ −4.2 Γ is due to the (n − 3)-rd mode being in resonance with the |5S1/2; 
F = 2〉 → |5P3/2; F′ = 2〉 transition, and the (n − 5)-th mode in resonance with the |5S1/2; F = 2〉 → |5P3/2; F′ = 1〉 
transition. Here, Γ = 2π × 6.0666 MHz17, and refers to the natural line width of the 87Rb |5S1/2〉 → |5P3/2〉 transi-
tion. The contributions to the FC force coming from transitions to different hyperfine states being in resonance 
with different comb modes are expressed more clearly in the results of calculations of the FC force shown in 
Fig. 1(c), where contributions of relevant transitions are explicitly given. The calculated FC force is obtained by 
numerically solving the optical Bloch equations describing the excitation of six-level 87Rb atoms by a FC18, and 
subsequently using the Ehrenfest theorem. More details on the FC force calculation are given in Methods.

The agreement between measured and calculated FC force in Fig. 1(b,c) is reasonable. Relative positions of the 
two peaks are well reproduced, though there is a small but noticeable broadening of the measured peaks, which 
we attribute to Zeeman splitting due to the stray magnetic fields. It is worth noting that similar line broadening 
has also been observed in15, whereas a detailed analysis of all possible systematic sources of errors which affect 
line broadening and shifts in FC spectroscopy can be found in19. The comparison of the areas under the measured 124
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and calculated force curve gives the factor 1.3, i.e. calculated force is 30% larger than measured. This agreement 
is satisfactory given that there are no free parameters in the calculations. In addition, calculations do not account 
for all the physical parameters of the experiment such as the stray magnetic fields, finite laser linewidth, and the 
laser beam profile.

The largest force is measured when the n-th comb mode is resonant with the standard cooling transition for 
87Rb, i.e., the right peak in Fig. 1(b), for which ΔxCM = 0.6 mm is obtained. During 1 ms of FC interaction time the 
atoms are accelerated with a constant acceleration of 110 m/s2 and acquire a velocity of 0.11 m/s. From the meas-
ured force, we calculate an on resonance scattering rate of γscat = 18600 s−1. Although the measured FC scattering 
rate is nearly three times larger than the value for a two-photon FC excitation, reported in Jayich et al.15, both 
works show comparable performance in term of the peak force, since the momentum transferred per two-photon 
excitation is about two times the momentum transferred per a single photon excitation. This clearly suggests that 
FC cooling via one-photon excitation is viable, and could therefore be a good choice when pursuing cooling of 
atoms and ions with dipole allowed transitions in the VUV spectral region.

FC cooling.  In order to achieve FC cooling in one dimension, we retro-reflect the FC beam. Two counter- 
propagating FC beams are carefully overlapped in the centre of the MOT, and specific care is taken to slightly focus 
the retro-reflected beam in order to match its intensity to the incoming FC beam intensity. Prior to entering the MOT 
chamber λ/4 waveplates are put in the beam path, so as to achieve a σ+-σ− polarization configuration.

The measurement sequence for studying FC cooling starts by preparing a cold rubidium cloud in the MOT. At 
t = 0 the MOT beams are switched off. The weak CW repumper laser is again left on. A quadrupole magnetic field 
with a gradient of 11.3 G/cm remains on during the measurements. Since the cloud is in the centre of the quadru-
pole field, the magnetic field is B ≈ 0. At t = 100 μs the FC beams are turned on. The FC beams are on for a time 
tFC (typically 3 ms), which we call the FC cooling time, after which the FC beams are switched off, and the cloud 
is left to expand freely for several ms before it is imaged with the camera. A series of time-of-flight (TOF) images 
are taken in this way at different expansion times. We fit our measured atomic distributions to the two dimen-
sional Gaussian function characterized by σx and σy, which are related to the widths of the cloud along the x and 
y direction, respectively. The obtained spatial width of the cloud σx as a function of the expansion time gives an 
accurate measure of the cloud temperature by fitting to the expression σ σ= +t t( ) kT

m
2

0
2 215, where t = 0 is the 

time when the FC cooling laser is switched off. We repeat the measurement protocol 4 times for a given expansion 
time, and subsequently average the results to obtain the temperature.

Temperatures obtained by TOF measurements as a function of δ are shown in Fig. 2, where δ is the detuning of 
the n-th comb mode from the |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 transition. A total power of the FC beam entering the 
MOT chamber was 21 mW and a beam FWHM of 2.8 mm were used, giving 0.6 μW power and 0.011 mW/cm2  
intensity per comb mode. The initial cloud temperature is Ti = 240 μK, and the FC cooling time is tFC = 3 ms.
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Figure 1.  Scheme of relevant 87Rb energy levels and FC modes (a). Measured (b) and calculated (c) FC force as 
a function of detuning. The total force in (c), blue line, reflects the interaction with three comb modes: the n-th 
comb mode with the |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 transition (green dashed line); the (n − 3)-rd mode resonance 
with the |5S1/2; F = 2〉 → |5P3/2; F′ = 2〉 transition (orange dashed line); and the (n − 5)-th mode resonance with 
the |5S1/2; F = 2〉 → |5P3/2; F′ = 1〉 transition (red dashed line).
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The measured temperatures approach the initial cloud temperature for large δ. FC cooling is observed for 
the n-th comb mode red detuned from the |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 transition, with the lowest temperature 
of 155(5) μK is observed for δ ≈ −Γ/2. Heating is observed when the n-th comb mode is blue detuned from the 
resonance transition. Figure 2(a) shows the TOF image at 6 ms of expansion time for δ = −1.1 Γ, green data point, 
where the obtained cloud temperature is close to the initial temperature, see green slope in the inset. The meas-
ured width (FWHM) of the cloud along the x-axis which is relevant for 1D FC cooling is 2.75 mm.

The lowest temperature is observed for δ ≈− Γ/2, blue data point, i.e., when there is a comb (n-th comb) detuned 
by ≈−3 MHz from the 87Rb |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 transition. The corresponding TOF image, at 6 ms of 
expansion time, is shown in Fig. 2(b). As a consequence of the FC cooling the cloud FWHM along the x-axis is 
decreased to 2.17 mm. The temperature given by the slope in the inset is 155(5) μK. This temperature is, within 
measured uncertainty, in agreement with the predictions for the comb cooling Doppler temperature given in the 
works of Aumiler et al.14 and Ip et al.16 for our experimental parameters δ = − Γ/2, θ = π/160, TR = 12.5 ns and ζ = 1.

For a blue-detuned comb we observe heating, obtaining temperatures higher than the initial temperature, 
red data point and red slope in the inset. Correspondingly, the TOF image shown in Fig. 2(c) shows an increased 
cloud FWHM along the x-axis of 3.8 mm. The changes in the cloud temperature (along the x-axis) with the FC 
detuning are accompanied with the increase of the temperature in the y-axis, i.e., perpendicular to the FC cooling 
beams, due to the heating caused by spontaneous emission. The signature of this heating along the y-axis is evi-
dent in the increase of the cloud FWHM along the y-axis. Of the ones shown, the largest FWHM along the y-axis 
of 4.33 mm is obtained for the TOF image shown in Fig. 2(b) since the most efficient excitation (and consequently 
more spontaneous emission) is obtained for this detuning.

As the FC cooling time is increased, the cloud temperature decreases from the initial value prepared in the 
MOT phase, Ti, and the Doppler limited steady state temperature is achieved after a few ms of FC cooling time. In 
Fig. 3(a) the dependence of cloud temperature on the FC cooling time is shown, with an initial cloud temperature 
Ti = 237 μK, δ = −2/3 Γ, and single comb mode intensity of 0.01 mW/cm2. The steady state is achieved faster for 
higher comb mode intensities.

The dependence of the measured temperature on the intensity of the comb mode for a cloud with an initial 
temperature Ti = 250 μK, FC cooling time of 3.5 ms, and for δ = −2/3 Γ is shown in Fig. 3(b). Temperatures close 
to the Doppler temperature are obtained for a wide range of intensities, and an insignificant reduction in tem-
perature is observed when the comb mode intensity approaches zero. Such behavior is a consequence of the very 
low comb mode intensities which are below 1% of the saturation intensity, Is, for the |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 
transition17 and a limited FC interaction time.

Discussion
The results shown in Fig. 2 imply that the FC cooling is equivalent to the CW laser cooling, since a comb line 
red-detuned from the cooling transition is needed to obtain cooling. We verify this analogy by performing the same 
measurements with two counter-propagating CW beams replacing the FC beams, keeping all experimental param-
eters identical, with the two CW laser beams having intensity equal to the intensity of the relevant comb mode. The 

Figure 2.  Temperature obtained by TOF after 1D FC cooling as a function of FC detuning. The right panel 
shows three TOF images taken after 6 ms expansion time for a FC detuning that corresponds to the cloud’s 
temperature that is close to the initial temperature - green data point (a), lowest obtained - blue data point (b), 
higher than the initial temperature - red data point (c). Corresponding TOF data for 6–10 ms expansion times 
are given in the inset. A cloud with an initial temperature of Ti = 240 μK, a FC cooling time of 3 ms, and a comb 
mode intensity of 0.01 mW/cm2 were used. Solid line - theoretical model for relevant experimental parameters.
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obtained temperatures are comparable to the temperatures measured in the case of FC cooling. With respect to this, 
FC cooling observed in our experiment can be interpreted as single comb mode cooling, i.e., only the n-th comb 
mode is relevant for cooling, while other comb modes do not contribute to cooling or significant heating of the 
atoms. This is in agreement with the estimation that the scattering rates of neighboring comb modes13 are reduced 
by a factor of (Γ/2πfrep)2, which in our experiment gives a factor of 0.0055. This rapid falloff of scattering rate with 
detuning ensures that, althougth there are many comb lines, the dominant contribution to the total scattering rate 
comes from the single, near-resonant comb line. In addition, this is in line with the measurement of the FC radi-
ation pressure force, Fig. 1, where it is shown that only one comb mode, the n-th comb mode, participates in the 
excitation of the |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 cooling transition. This also rules out the concern that the interaction 
with the |5S1/2; F = 2〉 → |5P3/2; F′ = 1,2〉 resonances, Fig. 1, from which the (n − 3)rd and (n − 5)th comb mode are 
≈25 MHz blue detuned, contributes to heating and degrades the minimal observed temperature. In order to model 
the measured temperatures, we consider the n-th comb mode as a CW laser and use the analytical formulas for the 
calculation of radiation pressure force and diffusion coefficients20,21. With these parameters we numerically solve 
the Fokker-Planck equation for a given FC interaction (cooling) time and extract the atomic velocity distribution 
after the interaction with the FC, from which the cloud temperature is then obtained. The calculated temperatures, 
for relevant experimental parameters, are shown in Figs 2 and 3 by solid lines. The agreement between theory and 
experiment is satisfactory. More details on the temperature calculation are given in Methods.

As seen in Fig. 3(b), our experiment is performed in the low intensity regime (I Is ) that sets the limit of the 
observed temperature to the Doppler temperature. In order to achieve sub-Doppler temperatures, i.e., tempera-
tures below 146 μK, the intensity of the comb mode must be increased by a factor of 40. This sub-Doppler thresh-
old was obtained by measuring the temperature as a function of CW laser intensity in the case of CW laser 
cooling, and it is in agreement with the sub-Doppler threshold given in J. Dalibard and Y. Castin22. This leads to 
the conclusion that sub-Doppler cooling can be achieved with a FC of total output power about 840 mW. Such FC 
power levels are commercially available, thus the future demonstration of FC sub-Doppler cooling can be 
anticipated.

Conclusion
We have demonstrated Doppler cooling of neutral rubidium atoms on a single-photon transition using a single 
comb line of a frequency comb. The analogy between FC (single comb line) and CW laser cooling is verified 
by performing the same measurements using a CW laser of appropriate intensity. The minimum temperature 
obtained is limited by the low intensity in the comb mode relevant for cooling rather than with the residual 
heating from adjacent comb modes. We believe that in future experiments the power per comb line can easily be 
increased by more than two orders of magnitude, which should allow cooling to temperatures approaching the 
recoil limit, thus opening the possibility of laser cooling of species that require light in the VUV spectral region 
and enabling their use in quantum optics experiments and their applications.

Methods
Frequency comb stabilization.  The spectrum of the frequency comb (FC) consists of a series of sharp 
lines, e.g. comb modes23. The optical frequency of the n-th comb mode is given by fn = nfrep + f0, where frep is the 
laser repetition frequency and f0 is the offset frequency. Stabilization of the FC requires stabilization of these two 
degrees of freedom. In our experiment, we actively stabilize fn and frep. We stabilize a FC to a CW reference laser 
(ECDL, Moglabs CEL002) locked to the 87Rb |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 transition.

The laser repetition frequency, frep, is a radio frequency (RF) signal of ≈80.5 MHz. It is detected with a high-speed  
photodiode and referenced to a rubidium frequency standard referenced low-noise synthesizer. The obtained error sig-
nal is used to actively stabilize frep by feedback to the Er:fiber laser intracavity piezoelectric-transducer-mounted mirror.
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Figure 3.  (a) The decrease in cloud temperature due to FC cooling as a function of the FC cooling time 
for an initial cloud temperature Ti = 237 μK, δ = −2/3Γ, and single comb mode intensity of 0.01 mW/cm2. 
(b) The dependence of the measured temperature on the intensity of the comb mode for a cloud with an 
initial temperature Ti = 250 μK, a FC cooling time of 3.5 ms and δ = −2/3Γ. A theoretical model for relevant 
experimental parameters is also shown (solid line).
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The optical frequency of the n-th comb mode, fn, is stabilized to an external cavity diode laser (ECDL) which 
is stabilized to the 87Rb |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 cooling transition using polarization spectroscopy. fn is 
phase locked to the stabilized ECDL by using heterodyne spectroscopy. A fraction of the ECDL light (≈10 mW) 
and a fraction of the FC light (≈1 mW) are co-propagated and directed first onto a grating to spatially filter the 
unwanted comb modes to reduce background noise, and then onto a fast photodiode. The measured signal, fbeat, 
is a radio frequency signal in the range of 0–40 MHz. It is also referenced to a rubidium frequency standard ref-
erenced low-noise synthesizer. The obtained error signal is used for stabilization of fn via feedback to the Er:fiber 
laser current.

By changing the reference frequency for the beat note stabilization, it is possible to change the detuning of the 
n-th comb mode, δ, from the the |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 transition. The available range for a continuous 
change of the beat frequency is fbeat = 5–30 MHz, so three scans with different detunings of the reference ECDL 
are measured and subsequently merged to obtain the total scan of 58 MHz shown in Fig. 1(b), while only one 
detuning of the reference ECDL is sufficient for the FC scan shown in Fig. 2.

The stability of the FC is evaluated by measuring the optical heterodyne beat note between the FC and an addi-
tional ECDL laser stabilized to a two-photon transition in rubidium, which serves as a length primary standard. 
The length primary standard laser is stabilized to the two-photon transition in 87Rb |5S1/2; F = 2〉 → |5D5/2; F′ = 4〉 
using a dither lock. The error signal is generated from the laser induced fluorescence (LIF) at 420 nm produced 
by rubidium atoms contained in a glass cell heated to ≈110 oC, where a photomultiplier tube collects the LIF and 
generates an adequate signal. The measured Allan deviation which determines the upper limit on the stability of 
our FC is ≈3 kHz for an integration time of 10 s.

Theoretical model for the FC radiation pressure force calculation.  We model the electric field ET(t) 
of a FC by24

∑ ε=




 −







ω

=

∞
ΦE t t mT e e( ) ( ) ,

(1)
T

m
R

im i t

0

R L

where ε(t) = E0 sech (1.763t/Tp) is the single pulse envelope, Tp is the pulse length, TR is the laser repetition period, 
ΦR is the roundtrip phase acquired by the laser within the cavity and the laser spectrum is centered at ωL + ΦR/TR. 
In addition to the FC beam we include a CW beam with amplitude Ecw, to model the repumper laser. For the sim-
ulation results presented in Fig. 1(c) we have used: E0 = 5 × 104 V/m, Tp = 300 fs, 1/TR = 80.54 MHz and ΦR = 0 for 
the FC beam and Ecw = 40 V/m with a detuning of −100 MHz from the |5S1/2; F = 1〉 → |5P3/2; F′ = 2〉 transition 
for the CW repumper beam. This corresponds to experimental values within measured uncertainty.

Dynamical evolution of the internal atomic states interacting with the FC field ET and the CW field Ecw is mod-
eled by optical Bloch equations (OBEs). The description of an OBE model for two-level atoms interacting with a 
FC is given e.g. in Ilinova et al.25. In our calculations we take into account the full hyperfine level structure of the 
D2(5S1/2 → 5P3/2) line of 87Rb, i.e. a total of 6 levels, see Fig. 1. This results in a system of 21 coupled differential 
equations for the independent elements ρij(t) of the density matrix, which are solved numerically. To calculate 
the steady state values of an optical coherence, we average the solution for a pulse train consisting of 150 pulses 
over the duration of final 5 pulses. The Doppler shift due to pushing by the FC is neglected due to small velocity 
acquired (see description of Fig. 1).

We calculate the force FFC exerted on an atom by a FC pulse train propagating in the +x-direction by using the 
Ehrenfest theorem. The atom-light interaction is approximated to arise solely due to the three near-resonant 
comb modes. The effective on-resonance Rabi frequency of the n-th comb mode is given by μΩ = E /n n

eff , where 
7/6 3 584 10 29μ = ⋅ . ⋅ −  C · m is the transition dipole matrix element, and = .E 3 1n

eff  V/m is the effective electric 
field amplitude of the n-th comb mode. As the powers in the neighboring comb modes are approximately equal, 
Rabi frequencies of the three modes differ solely due to different coupling strengths of their respective transitions. 
Ratios of the Rabi frequencies are thus η = Ω Ω =− − / 1/14n n n5 5  and η = Ω Ω =− − / 5/14n n n3 3

17. Coupling of 
the FC to the F = 1 ground state is neglected due to majority of population being in the F = 2 ground state, as 
confirmed by simulations. Following Ilinova et al.25, the total FC force on a single atom is now given by

 η ρ η ρ ρ= Ω + +− ′ − ′ ′F k Im Im Im( ( ) ( ) ( )), (2)FC n n n5 21 3 22 23

where k is the laser wavenumber and ρij′ is an optical coherence of the transition F = i → F′ = j′.

Theoretical model for a comb mode cooling.  In order to model the measured temperatures, we con-
sider the n-th comb mode as a CW laser. Temperature is extracted from the width of the atomic velocity distribu-
tion obtained after a given interaction time with the laser. Since the atomic velocity distribution after the 
interaction can still be considered as Maxwell-Boltzman, the temperature is calculated using the relation 

=mv k Trms B
2  where m is the mass of rubidium atom, vrms is the standard deviation of the corresponding Gaussian 

function, kB is Boltzman constant, and T is the temperature.
The atomic velocity distribution after a given interaction time is calculated by employing the Fokker-Planck 

equation20:

v t
t m v

F v v t
m v

D v v t( , ) 1 ( ( ) ( , )) 1 ( ( ) ( , )),
(3)2

2

2
ρ ρ ρ∂

∂
= −

∂
∂

+
∂
∂

where v is the velocity of the atom, t is the interaction time, ρ(v, t) is the atomic velocity distribution, F(v) and 
D(v) are velocity dependent radiation pressure force and diffusion coefficient, respectively. 128
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Radiation pressure force and diffusion coefficients are calculated using standard low-intensity theory for a 
two-level atom in one dimension20.

Total force from two counter-propagating light beams interacting with the 87Rb |5S1/2; F = 2〉 → |5P3/2; F′ = 3〉 
transition is equal to the sum of the contributions of the two counter-propagating beams:

δ

δ δ
=

ΓΩ

+ + − + + +
.

Ω Γ Ω Γ



( )( )
F v k v

kv kv
( )

( ) ( )
(4)

2 2

2 4
2

2 4
22 2 2 2

The Rabi frequency, Ω, is defined by the amplitude of the light electric field, transition dipole matrix element 
and reduced Planck constant, k = 2π/780 nm−1 is the wave number, and δ is detuning from the atomic resonance 
frequency17.

The diffusion coefficient is calculated from:

 ( )
( )( )

D v
k kv

kv kv
( )

( )

2 ( ) ( )
(5)

2 2 2
2 4

2 2

2 4
2

2 4
2

2 2

2 2 2 2

δ

δ δ
=

ΓΩ + + +

+ + − + + +
.

Ω Γ

Ω Γ Ω Γ

We numerically solve the Fokker-Planck equation for a given set of parameters: atom-light interaction time, 
tFC, the amplitude of the light electric field, E0, and detuning, δ, and calculate the final atomic velocity distribution 
from which the temperature of the cloud after the interaction with the light beam is obtained. This temperature 
corresponds to the temperature measured by TOF spectroscopy, and it is shown by solid lines in Figs 2 and 3. 
For the simulation results presented in Fig. 2 we used E0 = 6 V/m and tFC = 3 ms, while for the simulation results 
presented in Fig. 3(a,b) E0 = 8.2 V/m, δ = −2/3 Γ and tFC = 3.5 ms are used, respectively. These results corresponds 
to the measured values within the measured uncertainty.

Data Availability
The data that support the findings of this study are available from the corresponding author on reasonable re-
quest.
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